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Abstract

This work investigates the use of robust optimal transport (OT) for shape matching.
Specifically, we show that recent OT solvers improve both optimization-based
and deep learning methods for point cloud registration, boosting accuracy at an
affordable computational cost. This manuscript starts with a practical overview
of modern OT theory. We then provide solutions to the main difficulties in us-
ing this framework for shape matching. Finally, we showcase the performance
of transport-enhanced registration models on a wide range of challenging tasks:
rigid registration for partial shapes; scene flow estimation on the Kitti dataset; and
nonparametric registration of lung vascular trees between inspiration and expira-
tion. Our OT-based methods achieve state-of-the-art results on Kitti and for the
challenging lung registration task, both in terms of accuracy and scalability.
We also release PVT1010, a new public dataset of 1,010 pairs of lung vascular
trees with densely sampled points. This dataset provides a challenging use case for
point cloud registration algorithms with highly complex shapes and deformations.
Our work demonstrates that robust OT enables fast pre-alignment and fine-tuning
for a wide range of registration models, thereby providing a new key method
for the computer vision toolbox. Our code and dataset are available online at:
https://github.com/uncbiag/robot.

1 Introduction

Shape registration is a fundamental but difficult problem in computer vision. The task is to determine
plausible spatial correspondences between pairs of shapes, with use cases that range from pose
estimation for noisy point clouds [14] to the nonparametric registration of high-resolution medical
images [17]. As illustrated in Fig. 1, most existing approaches to this problem consist of a combination
of three steps, possibly fused together by some deep learning (DL) methods: (1) feature extraction;
(2) feature matching; and (3) regularization using a class of acceptable transformations that is
specified through a parametric or nonparametric model. This work discusses how tools derived from
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optimal transport (OT) theory [87] can improve the second step of this pipeline (feature matching) on
challenging problems. To put these results in context, we �rst present an overview of related methods.

1. Feature extraction. To establish spatial correspondences, one �rst computes descriptive local
features. When dealing with (possibly annotated) point clouds, a simple choice is to rely on Cartesian
coordinates(x; y; z) [3, 26]. Going further, stronger descriptors capture local geometric and topo-
logical properties: examples include shape orientation and curvatures [21, 96], shape contexts [6],
spectral eigenvalues [70, 84] and annotations such as color [76] or chemical �ngerprints [43, 113].
Recently, expressive feature representations have also beenlearnedusing deep neural networks
(DNN): see [16] and subsequent works ongeometricdeep learning. Generally, feature extractors
are designed to make shape registration as unambiguous as possible. In order to get closer to the
ideal case of landmark matching [11], we associate discriminative features to the salient points of our
shapes: this increases the robustness of the subsequentmatchingandregularizationsteps.

2. Feature matching.Once computed on both of the source and target shapes, feature vectors are
put in correspondence with each other. This assignment is often encoded as an explicit mapping
between the two shapes; alternatively, the vector �eld relating the shapes can be de�ned implicitly as
the gradient of a geometric loss function that quanti�es discrepancies between two distributions of
features [35]:

a) A �rst major approach is to rely onnearest neighborprojections and the related chamfer
[12] and Hausdorff distances [13], as in the Iterative Closest Point (ICP) algorithm [7].
This method can be softened through the use of a softmax (log-sum-exp) operator as in the
many variants of the Coherent Point Drift (CPD) method [44, 72, 73, 81], or made robust to
outliers in the speci�c context of rigid and af�ne registrations [14, 41, 128, 129].

b) Alternatively, a second approach is to rely onconvolutional kernel norms such as the
Energy Distance [94], which are also known as Maximum Mean Discrepancies (MMD) in
statistics [48]. These loss functions are common in imaging science [88] and computational
anatomy [21, 115] but are prone to vanishing gradients [39, 40].

c) Finally, a third type of approach is to rely onoptimal transport (OT) theory [87] and
solutions of the earth mover's problem [97]. This method is equivalent to a nearest neighbor
projection under a global constraint of bijectivity that enforces consistency in the matching.
On the one hand, OT has been known to provide reliable correspondences in computer
vision for more than two decades [26, 47, 64]. On the other hand, it has often faced major
issues of scalability and robustness to outliers on noisy data. As detailed below, the main
purpose of this work is to overcome these limitations and enable the widespread use of OT
tools for challenging registration problems.

3. Regularization with a deformation model.The output of the two steps above is a non-smooth
vector �eld that may not be suitable for downstream tasks due to e.g. tears and compression artifacts.
As a third step, most registration methods thus rely on regularization to obtain plausible deformations.
This process is task-speci�c, with applications that range from rigid registration [2, 30, 46, 121, 122,
133] to free-form motion estimation [49, 69, 91, 126]. In Sec. 3, we address the interaction of OT
matching layers with a varied collection of regularization strategies – from optimization-based spline
and diffeomorphic models to DNNs.

Recent progresses.Research works on shape registration combine ideas from the three paragraphs
above to best �t the characteristics of computer vision problems [31, 71, 107]. Over the past few years,
signi�cant progress has been made on all fronts. On the one hand, (geometric) deep learning networks
have been used to de�ne data-driven feature maps [92, 92, 123] and multiscale regularization modules
[68, 108, 126], sometimes fused within end-to-end architectures [30, 91, 132, 133]. On the other
hand, nearest neighbor projections, kernel convolutions and transport-based matching strategies
have all been generalized to take advantage of these modern descriptors: they can now be used in
high-dimensional feature spaces [37, 59].

Challenges.Nevertheless, state-of-the-art (SOTA) methods in the �eld still have important limitations.
First, modern deep learning pipelines are often hard to train to “pixel-perfect” accuracy on non-
smooth shapes, with diminishing returns in terms of model size and training data [2]. Second, scaling
up point neural networks to �nely sampled shapes (N > 10k points) remains a challenging research
topic [37, 49, 135]. Third, the impact of the choice of a speci�c feature matching method on the
performance of deep learning models remains only partially understood [58].
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Figure 1:Robust Optimal Transport (RobOT) generalizes sorting to spaces of dimensionD > 1.
(a) RobOT is equivalent to a nearest neighbor projection subject to mass distribution constraints that
make it robust to translations and small deformation. We demonstrate that RobOT is now ready to be
part of the standard toolbox in computer vision with extensive numerical experiments for 3D scene
�ow estimation (b) and lung registration (c). Rendering done with Paraview [1] and PyVista [112].

Related works. Following major progress on computational OT in the mathematical literature
[27, 66, 79, 103], improved modules for feature matching have attracted interest as a possible solution
to these challenges. Works on sliced partial OT [9] and dustbin-OT [28] have shown that outliers
can be handled effectively by OT methods for rigid registration, beyond the classic Robust Point
Matching method (RPM) [26, 47]. Going further, the Sinkhorn algorithm for entropy-regularized
OT [27, 64, 65, 104] has been studied extensively for shape registration in computational anatomy
[36, 45] and computer graphics [33, 74, 85]. The Gromov–Wasserstein distance has also been
used for shape analysis [110, 118], albeit at a higher computational cost. These applications have
driven interest in the development of a complete theory forRobust Optimal Transport (RobOT),
outlined in Sec. 2, which handles both sampling artifacts and outliers [24, 25, 67, 80, 105, 106]. Most
recently, this framework has started to be used in shape analysis with applications to shape matching
[36], the segmentation of brain tractograms [38] and deep deformation estimation with theFLOT
architecture [91].

Contributions. We build upon the work above to tackle challenging point cloud registration problems
for scene �ow estimation and computational anatomy. Ourkey contributions are:

1. Accurate feature matching with scalable OT solvers.For the �rst time, we scale up
RobOT for deep feature matching to high-resolution shapes with more than 10k points. To
this end, we leverage the latest generation of OT solvers [35, 39] and overcome signi�cant
issues of memory usage and numerical stability. This allows us to handle �ne-grained details
effectively, which is key for e.g. most medical applications.

2. Interaction with task-speci�c regularization strategies. We show how to interface
RobOTmatchings with advanced deformation models. This is in contrast with e.g. the
FLOT architecture, which focuses on the direct prediction of a vector �eld and cannot be
used for applications that require guarantees on the smoothness of the registration.

3. Challenging new dataset.We release a large dataset of lung vascular trees that should be
registered between inhalation and exhalation. This relevant medical problem involves large
and complex deformations of high-resolution 3D point clouds. As a new benchmark for
the community, we provide two strong baselines that rely respectively on global feature
matching and on deep deformation estimation.

4. Consistent SOTA performance.Our proposed models achieve SOTA results for scene �ow
on Kitti [77, 78] and for point-cloud-based lung registration onDirLab-COPDGene[19].
Notably, we show thatRobOTis highly suited to �ne-tuning tasks: it consistently turns
“good” matchings into nearly perfect registrations at an affordable numerical cost.

Main experimental observations.Is OT relevant in the deep learning era? To answer this question
decisively, we perform extensive numerical experiments and ablation studies. We fully document
“underwhelming” results in the Supplementary Material and distill the key lessons that we learned in
the Deep-RobOT architecture (Section 3.2). This model relies on fast RobOT layers to cover for the
main weaknesses of point neural networks for shape registration. It is remarkably easy to deploy and
generalizes well from synthetic training data to real test samples. We thus believe that it will have a
stimulating impact on both of the computer vision and medical imaging literature.
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