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Abstract

This work investigates the use of robust optimal transport (OT) for shape matching.
Specifically, we show that recent OT solvers improve both optimization-based
and deep learning methods for point cloud registration, boosting accuracy at an
affordable computational cost. This manuscript starts with a practical overview
of modern OT theory. We then provide solutions to the main difficulties in us-
ing this framework for shape matching. Finally, we showcase the performance
of transport-enhanced registration models on a wide range of challenging tasks:
rigid registration for partial shapes; scene flow estimation on the Kitti dataset; and
nonparametric registration of lung vascular trees between inspiration and expira-
tion. Our OT-based methods achieve state-of-the-art results on Kitti and for the
challenging lung registration task, both in terms of accuracy and scalability.
We also release PVT1010, a new public dataset of 1,010 pairs of lung vascular
trees with densely sampled points. This dataset provides a challenging use case for
point cloud registration algorithms with highly complex shapes and deformations.
Our work demonstrates that robust OT enables fast pre-alignment and fine-tuning
for a wide range of registration models, thereby providing a new key method
for the computer vision toolbox. Our code and dataset are available online at:
https://github.com/uncbiag/robot.

1 Introduction

Shape registration is a fundamental but difficult problem in computer vision. The task is to determine
plausible spatial correspondences between pairs of shapes, with use cases that range from pose
estimation for noisy point clouds [14] to the nonparametric registration of high-resolution medical
images [17]. As illustrated in Fig. 1, most existing approaches to this problem consist of a combination
of three steps, possibly fused together by some deep learning (DL) methods: (1) feature extraction;
(2) feature matching; and (3) regularization using a class of acceptable transformations that is
specified through a parametric or nonparametric model. This work discusses how tools derived from
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optimal transport (OT) theory [87] can improve the second step of this pipeline (feature matching) on
challenging problems. To put these results in context, we first present an overview of related methods.

1. Feature extraction. To establish spatial correspondences, one first computes descriptive local
features. When dealing with (possibly annotated) point clouds, a simple choice is to rely on Cartesian
coordinates (x, y, z) [3, 26]. Going further, stronger descriptors capture local geometric and topo-
logical properties: examples include shape orientation and curvatures [21, 96], shape contexts [6],
spectral eigenvalues [70, 84] and annotations such as color [76] or chemical fingerprints [43, 113].
Recently, expressive feature representations have also been learned using deep neural networks
(DNN): see [16] and subsequent works on geometric deep learning. Generally, feature extractors
are designed to make shape registration as unambiguous as possible. In order to get closer to the
ideal case of landmark matching [11], we associate discriminative features to the salient points of our
shapes: this increases the robustness of the subsequent matching and regularization steps.

2. Feature matching. Once computed on both of the source and target shapes, feature vectors are
put in correspondence with each other. This assignment is often encoded as an explicit mapping
between the two shapes; alternatively, the vector field relating the shapes can be defined implicitly as
the gradient of a geometric loss function that quantifies discrepancies between two distributions of
features [35]:

a) A first major approach is to rely on nearest neighbor projections and the related chamfer
[12] and Hausdorff distances [13], as in the Iterative Closest Point (ICP) algorithm [7].
This method can be softened through the use of a softmax (log-sum-exp) operator as in the
many variants of the Coherent Point Drift (CPD) method [44, 72, 73, 81], or made robust to
outliers in the specific context of rigid and affine registrations [14, 41, 128, 129].

b) Alternatively, a second approach is to rely on convolutional kernel norms such as the
Energy Distance [94], which are also known as Maximum Mean Discrepancies (MMD) in
statistics [48]. These loss functions are common in imaging science [88] and computational
anatomy [21, 115] but are prone to vanishing gradients [39, 40].

c) Finally, a third type of approach is to rely on optimal transport (OT) theory [87] and
solutions of the earth mover’s problem [97]. This method is equivalent to a nearest neighbor
projection under a global constraint of bijectivity that enforces consistency in the matching.
On the one hand, OT has been known to provide reliable correspondences in computer
vision for more than two decades [26, 47, 64]. On the other hand, it has often faced major
issues of scalability and robustness to outliers on noisy data. As detailed below, the main
purpose of this work is to overcome these limitations and enable the widespread use of OT
tools for challenging registration problems.

3. Regularization with a deformation model. The output of the two steps above is a non-smooth
vector field that may not be suitable for downstream tasks due to e.g. tears and compression artifacts.
As a third step, most registration methods thus rely on regularization to obtain plausible deformations.
This process is task-specific, with applications that range from rigid registration [2, 30, 46, 121, 122,
133] to free-form motion estimation [49, 69, 91, 126]. In Sec. 3, we address the interaction of OT
matching layers with a varied collection of regularization strategies – from optimization-based spline
and diffeomorphic models to DNNs.

Recent progresses. Research works on shape registration combine ideas from the three paragraphs
above to best fit the characteristics of computer vision problems [31, 71, 107]. Over the past few years,
significant progress has been made on all fronts. On the one hand, (geometric) deep learning networks
have been used to define data-driven feature maps [92, 92, 123] and multiscale regularization modules
[68, 108, 126], sometimes fused within end-to-end architectures [30, 91, 132, 133]. On the other
hand, nearest neighbor projections, kernel convolutions and transport-based matching strategies
have all been generalized to take advantage of these modern descriptors: they can now be used in
high-dimensional feature spaces [37, 59].

Challenges. Nevertheless, state-of-the-art (SOTA) methods in the field still have important limitations.
First, modern deep learning pipelines are often hard to train to “pixel-perfect” accuracy on non-
smooth shapes, with diminishing returns in terms of model size and training data [2]. Second, scaling
up point neural networks to finely sampled shapes (N > 10k points) remains a challenging research
topic [37, 49, 135]. Third, the impact of the choice of a specific feature matching method on the
performance of deep learning models remains only partially understood [58].
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Figure 1: Robust Optimal Transport (RobOT) generalizes sorting to spaces of dimension D > 1.
(a) RobOT is equivalent to a nearest neighbor projection subject to mass distribution constraints that
make it robust to translations and small deformation. We demonstrate that RobOT is now ready to be
part of the standard toolbox in computer vision with extensive numerical experiments for 3D scene
flow estimation (b) and lung registration (c). Rendering done with Paraview [1] and PyVista [112].

Related works. Following major progress on computational OT in the mathematical literature
[27, 66, 79, 103], improved modules for feature matching have attracted interest as a possible solution
to these challenges. Works on sliced partial OT [9] and dustbin-OT [28] have shown that outliers
can be handled effectively by OT methods for rigid registration, beyond the classic Robust Point
Matching method (RPM) [26, 47]. Going further, the Sinkhorn algorithm for entropy-regularized
OT [27, 64, 65, 104] has been studied extensively for shape registration in computational anatomy
[36, 45] and computer graphics [33, 74, 85]. The Gromov–Wasserstein distance has also been
used for shape analysis [110, 118], albeit at a higher computational cost. These applications have
driven interest in the development of a complete theory for Robust Optimal Transport (RobOT),
outlined in Sec. 2, which handles both sampling artifacts and outliers [24, 25, 67, 80, 105, 106]. Most
recently, this framework has started to be used in shape analysis with applications to shape matching
[36], the segmentation of brain tractograms [38] and deep deformation estimation with the FLOT
architecture [91].

Contributions. We build upon the work above to tackle challenging point cloud registration problems
for scene flow estimation and computational anatomy. Our key contributions are:

1. Accurate feature matching with scalable OT solvers. For the first time, we scale up
RobOT for deep feature matching to high-resolution shapes with more than 10k points. To
this end, we leverage the latest generation of OT solvers [35, 39] and overcome significant
issues of memory usage and numerical stability. This allows us to handle fine-grained details
effectively, which is key for e.g. most medical applications.

2. Interaction with task-specific regularization strategies. We show how to interface
RobOT matchings with advanced deformation models. This is in contrast with e.g. the
FLOT architecture, which focuses on the direct prediction of a vector field and cannot be
used for applications that require guarantees on the smoothness of the registration.

3. Challenging new dataset. We release a large dataset of lung vascular trees that should be
registered between inhalation and exhalation. This relevant medical problem involves large
and complex deformations of high-resolution 3D point clouds. As a new benchmark for
the community, we provide two strong baselines that rely respectively on global feature
matching and on deep deformation estimation.

4. Consistent SOTA performance. Our proposed models achieve SOTA results for scene flow
on Kitti [77, 78] and for point-cloud-based lung registration on DirLab-COPDGene [19].
Notably, we show that RobOT is highly suited to fine-tuning tasks: it consistently turns
“good” matchings into nearly perfect registrations at an affordable numerical cost.

Main experimental observations. Is OT relevant in the deep learning era? To answer this question
decisively, we perform extensive numerical experiments and ablation studies. We fully document
“underwhelming” results in the Supplementary Material and distill the key lessons that we learned in
the Deep-RobOT architecture (Section 3.2). This model relies on fast RobOT layers to cover for the
main weaknesses of point neural networks for shape registration. It is remarkably easy to deploy and
generalizes well from synthetic training data to real test samples. We thus believe that it will have a
stimulating impact on both of the computer vision and medical imaging literature.
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2 Robust optimal transport

This section introduces the mathematical foundations of our work. After a brief overview of Robust
Optimal Transport (RobOT) theory, we discuss the main challenges that one encounters when using
this framework for computer vision. To avoid memory overflows and numerical stability issues, we
introduce the weighted “RobOT matching”: a vector field that summarizes the information of a full
transport plan with a linear memory footprint. As detailed in the next sections, this representation lets
us scale up to high-resolution shapes without compromising on accuracy.

2.1 Mathematical background

The assignment problem. If A = (x1, . . . , xN) and B = (y1, . . . , yM) are two point clouds in R3

with N = M, the assignment problem between A and B reads:

Assignment(A,B) = min
s:[[1,N]]→[[1,N]]

1

2N

N∑
i=1

‖xi − ys(i)‖2R3 , where s is a permutation. (1)

This problem generalizes sorting to R3: if the points xi and yj all belong to a line, the optimal
permutation s∗ corresponds to a non-decreasing re-ordering of the point sets A and B [87].

Robust optimal transport. Further, OT theory allows us to consider problems where N 6= M.
Non-negative weights α1, . . . , αN, β1, . . . , βM > 0 are attached to the points xi, yj and account
for variations of the sampling densities, while feature vectors p1, . . . , pN and q1, . . . , qM in RD may
advantageously replace raw point coordinates xi and yj in R3. Following [25, 67], the robust OT
problem between the shapes A = (αi, xi, pi) and B = (βj , yj , qj) reads:

OTσ,τ (A,B) = min
(πi,j)∈RN×M

>0

N∑
i=1

M∑
j=1

πi,j · 1
2‖pi − qj‖

2
RD (2)

+ σ2 KL
(
πi,j ||αi ⊗ βj

)︸ ︷︷ ︸
Entropic blur at scale σ.

+ τ2 KL
(∑

j πi,j ||αi
)︸ ︷︷ ︸

π should match A. . .

+ τ2 KL
(∑

i πi,j ||βj
)︸ ︷︷ ︸

. . . onto B.

,

for any choice of the regularization parameters σ > 0 and τ > 0. In the equation above, the
Kullback-Leibler divergence KL (ai||bi) =

∑
ai log (ai/bi) − ai + bi is a relative entropy that

penalizes deviations of a non-negative vector of weights (ai) to a reference measure (bi).

Parameters. The first regularization term is scaled by the square of a blur radius σ. This charac-
teristic length quantifies the fuzziness of the probabilistic assignment (πi,j) between points xi and
yj [35]. The last two regularization terms promote the matching of the full distribution of points A
onto the target shape B: they generalize the constraints of injectivity and surjectivity of Eq. (1) to the
probabilistic setting. They are scaled by the square of a maximum reach distance τ : this parameter
acts as a soft upper bound on the distance between feature vectors pi and qj that should be matched
with each other [38, 105].

For shape registration, we use simple heuristics for the values of these two characteristic scales:
the blur σ should be equal to the average sampling distance in feature space RD while the reach τ
should be equal to the largest plausible displacement for any given feature vector pi. These rules are
easy to follow if point features correspond to Cartesian coordinates xi and yj in R3 but may lead
to unexpected behaviors if features are output by a DNN. In the latter case, we thus normalize our
feature vectors so that ‖pi‖RD = ‖qj‖RD = 1 and pick values for σ and τ between 0 and 2.

Working with a soft, probabilistic transport plan. As detailed in [35], scalable OT solvers for
Eq. (2) return a pair of dual vectors (fi) ∈ RN and (gj) ∈ RM that encode implicitly an optimal
transport plan (πi,j) ∈ RN×M with coefficients:

πi,j = αiβj · exp 1
σ2

[
fi + gj − 1

2‖pi − qj‖
2
RD

]
> 0 . (3)

In the limit case where σ tends to 0 and τ tends to +∞, for generic point clouds (xi) and (yj) with
N = M and equal weights αi = βj = 1/N, πi,j is a permutation matrix [87]. We retrieve the simple
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assignment problem of Eq. (1): πi,j = 1/N if j = s∗(i) and 0 otherwise. However, in general the
transport plan must be understood as a probabilistic map between the point distributions A and B that
assigns a weight πi,j to the coupling “xi ↔ yj”. For shape registration, this implies that the main
difficulties for using robust OT are two-fold: first, the coupling π is not one-to-one, but one-to-many;
second, the lines and columns of the transport plan π do not sum up to one. Notably, this implies that
when τ < +∞, the gradient of the OT cost with respect to the point positions xi is not homogeneous:
we observe vanishing and inflated values across the domain [105].

2.2 RobOT: a convenient representation of the optimal transport plan

The weighted RobOT matching. To work around these issues, we introduce the vector field:

vi =

∑M
j=1 πi,j · (yj − xi)∑M

j=1 πi,j
∈ R3 with confidence weights wi =

M∑
j=1

πi,j > 0 . (4)

This object has the same memory footprint as the input shape A and summarizes the information
that is contained in the N-by-M transport plan (πi,j) – a matrix that is often too large to be stored
and manipulated efficiently. This “weighted RobOT matching” is at the heart of our approach and
generalizes the standard Monge map from classical OT theory [87] to the setting of (deep) shape
registration. In practice, the weighted vector field (w1, v1), . . . , (wN, vN) is both convenient to use
and easy to compute on GPUs. Let us briefly explain why.

Fast implementation. Our differentiable RobOT layer takes as input the two shapes A =
(αi, xi, pi) and B = (βj , yj , qj), with feature vectors pi and qj in RD that have been computed
upstream using e.g. a point neural network. It returns the N vectors vi with weights wi that map the
source points xi onto the targets yj in R3. Starting from the input point features pi, qj and weights αi,
βj , we first compute the optimal dual vectors fi and gj using the fast solvers of the GeomLoss library
[39]. We then combine Eq. (3) with Eq. (4) to compute the RobOT vectors vi and weights wi with
O(N + M) memory footprint using the KeOps library [20, 37] for PyTorch [86] and NumPy [117].
We use a log-sum-exp formulation to ensure numerical stability. Remarkably, our implementation
scales up to N,M = 100k in fractions of a second. Unlike common strategies that are based on
dense or sparse representations of the transport plan π, our approach is perfectly suited to a symbolic
implementation [37] and streams well on GPUs with optimal, contiguous memory accesses.

Comparison with nearest neighbor projections. We use our RobOT layer as a plug-in replace-
ment for closest point matching [7]. The blur (σ) and reach (τ ) scales play similar roles to the
standard deviation (σ) and weight of the uniform distribution (w) in the Coherent Point Drift (CPD)
method [81]: they allow us to smooth the matching in order to increase robustness to sampling
artifacts.

The main difference between projection-based matching and RobOT is that the latter enforces a mass
distribution constraint between the source and the target. This prevents our matching vectors from
accumulating on the boundaries of the distributions of point features (p1, . . . , pN) and (q1, . . . , qM)
in RD [40]. This property is most desirable when the shapes to register are fully observed, with a
dense sampling: as detailed in Suppl. A.5, enforcing the global consistency of a matching is then a
worthwhile registration prior.

Partial registration. On the other hand, we must also stress that OT theory has known limitations
[35]. First of all, the RobOT matching cannot guarantee the preservation of remarkable points or
of the shapes’ topologies “on its own”: it should be combined with relevant feature extractors and
regularizers. Going further, partial registration is not a natural fit for standard OT formulations which
assume that all points from both shapes must be put in correspondence with each other.

To mitigate this issue, RobOT leverages the theory of unbalanced optimal transport [24, 25, 67, 105,
106]: we rely on soft Kullback-Leibler penalties to enforce a matching between the shapes A and B
in Eq. (2). In practice, the RobOT confidence weights wi of Eq. (4) act as an attention mechanism:
they vanish when no target feature vector qj can be found in a τ -neighborhood of the source vector pi
in RD, where τ is the reach scale that is associated to Eq. (2). This lets our registration method focus
on reliable matches between similar features, without being fooled by strong constraints of bijectivity.
As detailed in Suppl. A.3, combining standard FPFH features [100] with the rigid projection of
Eq. (5) allows us to register partially observed shapes that have little overlap with each other.
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3 Regularization and integration with a deep learning model

3.1 Smooth-RobOT: algebraic and optimization-based regularization

Notations. We now detail how to interface the weighted RobOT matching with regularization
models and feature extractors that may be handcrafted [100, 101, 114] or learnt using a deep neural
network [29, 30, 46, 133]. Recall that we intend to register a source point cloud x1, . . . , xN onto a
target y1, . . . , yM in R3. Non-negative weights α1, . . . , αN and β1, . . . βM > 0 let us take into account
variations in the sampling densities and we assume that point features p1, . . . , pN, q1, . . . , qM in RD

have been computed upstream by a relevant feature extractor. For every source point xi, the RobOT
matching layer then provides a desired displacement vi in R3 with influence weight wi > 0.

Smoothing in closed form. Standard computations let us derive closed-form expressions for rigid
and affine registration [3, 57, 81]. These respectively correspond to transformations:

(Rigid RobOT) x ∈ R3 7→ (x− xc)UV > +xc + vc ∈ R3 , (5)

(Affine RobOT) x ∈ R3 7→ (x− xc) (X̂>WX̂)−1(X̂>WŶ ) +xc + vc ∈ R3 , (6)

where W = Diag(wi) ∈ RN×N is the diagonal matrix of influence weights, xc =
∑
i wixi/

∑
i wi ∈

R3 is the barycenter of the source shape, vc =
∑
i wivi/

∑
i wi ∈ R3 is the average desired

displacement, X̂ = (xi − xc) ∈ RN×3 is the centered matrix of source positions, Ŷ = (xi +
vi − xc − vc) ∈ RN×3 is the centered matrix of desired targets and USV > is the singular value
decomposition of X̂>WŶ ∈ R3×3. This corresponds to a weighted Kabsch algorithm [60]. Likewise,
we implement free-form spline registration using the KeOps library [20, 37]. A Nadaraya–Watson
interpolator with kernel k : (x, y) ∈ R3 × R3 7→ k(x, y) > 0 [82, 124] induces a transformation:

(Spline RobOT) x ∈ R3 7→ x +
∑N
i=1 wik(xi, x)vi /

∑N
i=1 wik(xi, x) ∈ R3 . (7)

Black-box deformation models. Going further, we interface RobOT matchings with arbitrary
deformation modules Morph : (θ, xi) 7→ ŷi ∈ R3 parameterized by a vector θ in RP. If Reg(θ)
denotes a regularization penalty on the parameter θ (e.g. a squared Euclidean norm), we use standard
optimizers such as L-BFGS-B [136] and Adam [63] to find the optimal deformation parameter:

θ∗ = arg min
θ∈RP

Reg(θ) +
∑N
i=1 wi‖xi + vi −Morph(θ, xi)‖2R3 . (8)

This optimization-based method is especially relevant in the context of computational anatomy, where
smooth and invertible deformations are commonly defined through the Large Deformation Diffeo-
morphic Metric Mapping (LDDMM) framework [5, 8, 35]. We stress that different transformation
models may result in different registration results and refer to Suppl. A.3 for further details.

Optimization-based approaches provide strong geometric guarantees on the final matching. But
unfortunately, these often come at a high computational price: to register complex shapes, quasi-
Newton optimizers require dozens of evaluations of the deformation model Morph(θ, x) and of
its gradients. In practice, fitting a complex model to a pair of high-resolution shapes may thus
take several minutes or seconds [17]. This precludes real-time processing and hinders research on
advanced deformation models.

3.2 Deep-RobOT: registration via deep deformation prediction

Deformation prediction. In this context, there is growing interest in fast learning methods that
avoid the use of iterative optimizers. The idea is to train a deep neural network Pred : (xi, yj) 7→ θ
that takes as input two point clouds A = (x1, . . . , xN), B = (y1, . . . , yM) and directly predicts
the optimal vector of parameters θ for a transformation model Morph(θ, · ) that should map A
onto B. Assuming that the prediction network Pred has been trained properly, this strategy enables
real-time processing while leveraging the task-specific geometric priors that are encoded within the
deformation model.

Over the last few years, numerous authors have worked in this direction for rigid registration [2, 30, 46,
121, 122, 133] and scene flow estimation [49, 69, 91, 126]. Comparable research on diffeomorphic
models has focused on images that are supported on a dense grid, with successful applications to e.g.
the registration of 3D brain volumes [4, 107, 131]. As of 2021, prediction-based approaches have
thus become standard methods for 3D shape registration.
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1. Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3. Spline-RobOT post-processing.

xi
yj

θ

θ

Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic 

pairs.

Figure 2: The D-RobOT architecture. Left: We apply three successive registration modules that
bring the moving source shape increasingly close to the fixed target point cloud. On the one hand,
the RobOT-based pre-alignment (1) and fine-tuning (3) steps take the (x, y, z) coordinates as input
features and do not require any training. On the other hand, our deep registration module (2) relies on
a multi-scale point neural network “Pred : (xi, yj) 7→ θ” (2.a) and a task-specific deformation model
“Morph(θ, xi) 7→ ŷi” (2.b). We train it end-to-end on a dataset of synthetic pairs of shapes with known
ground truth correspondences. Right: To generate these pairs, we apply random deformations to real
source shapes. For lung registration, we apply successively a vessel-preserving local perturbation and
a smooth global deformation – as detailed in Suppl. A.2.

The D-RobOT model. In practice though, prediction methods still face three major challenges:

1. Common architectures may not be equivariant to rigid or affine transformations.
2. Dense 3D annotation is expensive, especially in a medical context. As a consequence, most

predictors are trained on synthetic data and have to overcome a sizeable domain gap.
3. Predicted registrations may be less accurate than optimization-based solutions. Training

registration networks to pixel-perfect accuracy is notoriously hard, with diminishing returns
in terms of model size and number of training samples.

We propose to address these issues using RobOT layers for pre-alignment and post-processing. Our
Deep RobOT (D-RobOT) model is an end-to-end deep learning architecture that is made up of three
consecutive steps that we illustrate in Figure 2 and detail in Suppl. A.4:

1. OT-based pre-alignment. We use the rigid or affine S-RobOT models of Eqs. (5-6) to
normalize the pose of the source shape. This is a fast and differentiable pre-processing.

2. Deep registration module. We combine a deep predictor with a task-specific deforma-
tion model to register the pre-aligned source onto the target. For the prediction network
Pred : (xi, yj) 7→ θ, we use a multiscale point neural network that is adapted from the
PointPWC-Net architecture [126]. We refer to Suppl. A.4 for a full description of our
architecture and training loss.

3. OT-based post-processing. In order to reach “pixel-perfect” accuracy, we use the spline
S-RobOT deformation model of Eq. (7) with a task-specific kernel k(x, y).

Complementary strengths and weaknesses. We apply these three steps successively, which brings
the moving source A = (x1, . . . , xN) increasingly close to the fixed target B = (y1, . . . , yM). Re-
markably, each step of our method covers for the weaknesses of the other modules: the RobOT-based
pre-alignment makes our pipeline robust to changes of the 3D acquisition parameters; our multiscale
neural predictor is able to match corresponding key points quickly, even in complex situations; the
domain-specific deformation model acts as a regularizer and improves the generalization properties
of the deep registration module; the RobOT-based fine-tuning improves accuracy and helps our
model to overcome the domain gap between synthetic and real shape data.

As detailed below, the D-RobOT model generalizes well outside of its training dataset and outperforms
state-of-the-art methods on several challenging problems. We see it as a pragmatic architecture for
shape registration, which is easy to deploy and tailor to domain-specific requirements. As discussed
in Suppl. A.4, we found that introducing sensible geometric priors through our RobOT layers and
the deformation model Morph : (θ, xi) 7→ ŷi results in a “forgiving” pipeline: our model produces
accurate results, even when trained on synthetic data that is not very realistic. In a context
where generating plausible 3D deformations is easier than developing custom registration models for
every single task (e.g. in computational anatomy), we believe that this is an important observation.
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4 Scene flow estimation

Benchmark. We now evaluate our method on a standard registration task in computer vision: the
estimation of scene flow between two successive views of the same 3D scene. We follow the same
experimental setting as in [49, 126], with full details provided in Suppl. A.4.3:

1. We train on the synthetic Flying3D dataset [75], which is made up of multiple moving
objects that are sampled at random from ShapeNet. We take 19,640 pairs of point clouds for
training, with dense ground truth correspondences.

2. We evaluate on 142 scene pairs from Kitti, a real-world dataset [77, 78]. We conduct
experiments using 8,192 and 30k points per scan, sampled at random from the original data.

Performance metrics. We evaluate all methods as in [126]: EPE3D is the average 3D error,
in centimeters; Acc3DS is the percentage of points with 3D error< 5 cm or relative error< 5%;
Acc3DR is the percentage of points with 3D error< 10 cm or relative error< 10%; Outliers3D is
the percentage of points with 3D error> 30 cm or relative error> 10%; EPE2D is the average 2D
error obtained by projecting the point clouds onto the image plane, measured in pixels; Acc2D is the
percentage of points with 2D error< 3 px or relative error< 5%. As detailed in Suppl. A.6, all run
times were measured on a single GPU (24GB NVIDIA Quadro RTX 6000).

Methods. We study a wide range of methods and report the relevant metrics in Fig. 4:
In the upper third of the table, we report results for unsupervised methods that do not require ground
truth correspondences for training. This includes the “raw” RobOT matching of Eq. (4), computed
on (x, y, z) coordinates in R3 with a blur scale σ = 1 cm and a reach scale τ = +∞. Please
also note that PWC refers to an improved version of PointPWC-Net, released on GitHub (https:
//github.com/DylanWusee/PointPWC) after the publication of [126] with a self-supervised loss.
In the central third of the table, we benchmark a collection of state-of-the-art point neural networks.
In the lower third of the table, we study the influence of our RobOT-based layers. The methods “Pre
+ FLOT/PWC + Post” correspond to the FLOT and PointPWC-Net architectures, with the additional
pre-alignment and post-processing modules of Sec. 3.2. The last two lines correspond to the full
D-RobOT architecture (with a spline deformation model) whose training is detailed in Suppl. A.4.3.

Results. We make three major observations:

1. Without any regularization or training, a simple RobOT matching on high-resolution data
outperforms many deep learning methods in terms of speed, memory footprint and accuracy
(line 6 of the table). This surprising result is strong evidence that geometric methods and
baselines deserve more attention from the computer vision community.

2. In the lower third of the table, RobOT-enhanced methods consistently outperform state-
of-the-art methods by a wide margin.

3. As shown in Fig. 3, these improvements are most significant on high-resolution data.

Overall, as detailed in Suppl. A.4.3 and A.5, we observe that optimal transport theory is especially
well suited to scene flow estimation. Assuming that ground points have been removed from the 3D
frames (as a standard pre-processing), most object displacements can be explained as translations and
small rotations: this is an ideal setting for our robust geometric method.

5 Registration of high-resolution lung vessel trees

PVT1010: a new dataset for lung registration. Going further, we introduce a new dataset of 1,010
pairs of pulmonary vessel trees that must be registered between expiration (source) and inspiration
(target). Due to the intricate geometry of the lung vasculature and the complexity of the breathing
motion, the registration of these shapes is a real challenge.

As detailed in Suppl. A.1, we encode our 1,010× 2 vessel trees as high-resolution 3D point clouds
(N = M = 60k points per tree). For each point, we also provide a local estimate of the vessel radius
that we use as an additional point feature or as a weight αi or βj in Eq. (2). Our first 1,000 pairs of
3D point clouds are provided without ground truth correspondences; for all of our experiments, we
randomly sample 600 training and 100 validation cases from this large collection of unannotated
patients. The last 10 cases correspond to the 10 DirLab COPDGene pairs [19]: they come with 300
expert-annotated 3D landmarks per lung pair, that we use to test our methods.
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Figure 3: Influence of the sampling density on a detail (top car) of the Kitti frames of Fig. 1.b.
First row: On sub-sampled 3D scenes, the regularizing priors of the D-RobOT architecture prevent
over-fitting to the random sampling patterns of the target point cloud (blue). The D-RobOT output
(last column, red) is very close to the ground truth scene flow (green). Second row: Increasing the
number of points per frame reduces the influence of sampling artifacts. The simple RobOT baseline
(fourth column, red) still over-fits to the target (blue) but becomes remarkably competitive.

Method Points Time Memory EPE3D Acc3DS Acc3DR Outliers3D EPE2D Acc2D
ms ↓ Mb ↓ cm ↓ % ↑ % ↑ % ↓ px ↓ % ↑
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er
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d ICP (rigid) [7] 8k 224 2 51.81 6.69 16.67 87.12 27.6752 10.56
FGR (rigid) [134] 8k —- 30 48.35 13.31 28.51 77.61 18.7464 28.76
CPD (non-rigid) [81] 8k 34,880 798 41.44 20.58 40.01 71.46 27.0583 19.80
PWC (self) [126] 8k 237 1,016 25.49 23.79 49.57 68.63 8.9439 32.99
RobOT (raw) 8k 170 3 9.12 60.43 79.39 33.65 4.9920 56.23
RobOT (raw) 30k 166 89 4.67 80.43 91.05 20.21 1.7026 85.71
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ed
tr
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ni

ng
on

Fl
yi

ng
T

hi
ng

s3
D

FlowNet3D [69] 8k —- 690 17.67 37.38 66.77 52.71 7.2141 50.92
SPLATFlowNet [111] 8k —- —- 19.88 21.74 53.91 65.75 8.2306 41.89
original BCL [49] 8k —- —- 17.29 25.16 60.11 62.15 7.3476 44.11
HPLFlowNet [49] 8k —- —- 11.69 47.83 77.76 41.03 4.8055 59.38
FLOT [49] 8k 324 2,826 5.51 75.79 90.98 23.95 3.3152 75.10
PWC [126] 8k 237 1,016 5.28 85.83 94.08 18.85 3.0074 81.48
PWC 30k 1,138 10,691 7.63 67.54 92.30 26.09 3.5212 70.74
Pre + FLOT + Post 8k 487 2,826 5.33 76.84 91.65 23.56 3.2786 75.31
Pre + PWC + Post 8k 279 1,034 3.35 90.10 97.32 16.20 1.4301 93.85
Pre + PWC + Post 30k 1,207 10,691 3.50 90.04 96.71 17.28 1.5917 90.37
D-RobOT (spline) 8k 268 396 3.15 90.51 97.42 16.26 1.4532 93.76
D-RobOT (spline) 30k 547 610 2.23 95.88 99.19 12.89 1.0336 96.75
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Figure 4: Evaluation on the Kitti dataset for 3D scene flow. Black numbers and crosses (×)
correspond to results on scene pairs that are sampled with 8,192 points per frame; red numbers and
plus signs (+) correspond to scene pairs that are sampled with 30,000 points per frame.

(a) Source. (b) Target. (c) RobOT. (d) S-RobOT and target. (e) Deep features (source, target).

(f) After pre-alignment, target. (g) After deep registration, target. (h) After fine-tuning, target.

Figure 5: Registration of lung vascular trees. First row: S-RobOT registration with the deep
features of Suppl. A.3.3. We display: (a) the source and (b) target shapes; (c) the “raw” RobOT
registration; (d) a smoother S-RobOT registration with spline regularization, an overlap of this result
with the target shape; (e) a visualization of the deep features on a pair of lung vascular trees, with
colors that correspond to a t-SNE embedding of the point features in color space [116]. Second row:
D-RobOT registration. We display the successive steps of our model: (f) pre-alignment with affine
S-RobOT; (g) deep registration with an LDDMM model; (h) fine-tuning with spline S-RobOT.
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Table 1: 3D registration errors
on the 3,000 expert-annotated
DirLab landmarks. The † sym-
bol denotes methods that are based
on image keypoints [50, 51] and are
evaluated on the original DirLab im-
age dataset; all other approaches are
tested on our point clouds. Due to its
large memory requirements, CPD is
tested on clouds of 20k points (in-
stead of 60k).

Average Percentiles
error 25% 50% 75% Time

Method mm ↓ mm ↓ mm ↓ mm ↓ s ↓

N
o

tr
ai

ni
ng Input data 23.30 13.18 22.22 31.65 —

ICP (affine) [7] 15.05 9.60 14.06 20.01 0.52
CPD (non-rigid) [81] 9.30 5.95 8.60 11.83 332.60
RobOT (affine) 10.45 6.01 9.83 13.97 0.18
RobOT (raw) 9.41 4.89 8.35 13.04 0.15

Su
pe

rv
is

ed

DGCNN-CPD† [50] 4.30 — — — —
DispEmd† [51] 3.42 — — — —
S-RobOT (spline) 5.72 3.19 5.04 7.35 2.77
S-RobOT (LDDMM) 5.48 2.86 4.44 7.14 42.30
D-RobOT (raw) 3.40 1.40 2.58 3.69 1.26
D-RobOT (spline) 2.95 1.30 2.50 3.19 1.87
D-RobOT (LDDMM) 2.86 1.25 2.23 3.11 1.92

Data augmentation. The imbalance between our large training set and the small collection of 10
test cases reveals a fundamental challenge in computational anatomy: annotating pairs of 3D medical
shapes with dense correspondences is prohibitively expensive. To work around this problem, we train
our networks on synthetic deformations of the 600× 2 lung shapes that make up our training set. As
detailed in Suppl. A.2, we use a two-scales random field to generate a wide variety of deformations.
This allows us to create a suitable training set with dense “ground truth” correspondences.

Overall, as discussed in Suppl. A.4.2, we found that supervised training on synthetic deformations is
both easier and more efficient than unsupervised training on real lung pairs. From the chamfer and
Wasserstein distances [35] to local Laplacian penalties [126], none of the unsupervised loss functions
that we experimented with was able to deal with the complex geometry of our lung vascular trees.

Methods. We benchmark a wide range of methods in Fig. 5 and Tab. 1. In the upper half of the
table, we evaluate geometric approaches that require no training; in the lower half of the table, we
benchmark scalable point neural networks that we trained on our synthetic dataset. We evaluate three
types of RobOT-based approaches: a simple RobOT matching computed using (x, y, z) coordinates
as point features, that may either be “raw” as in Eq. (4) or regularized using Eq. (6); an S-RobOT
matching that we compute using the deep features of Suppl. A.3.3 and regularize with the spline
smoothing of Eq. (7) or the LDDMM optimization of Eq. (10); a D-RobOT architecture that we pair
with three deformation models Morph(θ, xi) 7→ ŷi and describe in depth in Suppl. A.4.2.

Results. We provide additional experiments in Suppl. A.4.2 and make three major observations:

1. Explicit regularization with a spline or LDDMM deformation model is key. Model-free
architectures that predict raw 3D correspondences produce non-smooth results that are not
anatomically plausible, even when they are trained entirely on smooth deformations.

2. The D-RobOT architecture combines a high acccuracy with fast run times.
3. Most remaining errors occur at the boundary of the lungs, where acquisition artifacts

prevent the thinnest vessels from being sampled reliably in our point cloud representation.

6 Conclusion, limitations and future work

Our work builds upon a decade of active research in the field of computational optimal transport.
We leverage major advances on RobOT solvers to define a new matching layer which is a plug-
and-play replacement for nearest neighbor projection. This operation has two major uses in 3D
shape registration: first, it provides a very strong geometric baseline for e.g. scene flow estimation;
second, it increases the accuracy and generalization abilities of point neural networks on finely
sampled 3D shapes. We see D-RobOT as a mature and versatile architecture for shape registration
which is easy to train and adapt to task-specific requirements in e.g. medical imaging.

Going forward, we see three main ways of improving this work. First, we still have to investigate
in depth the important problem of occlusions and partial acquisitions. Second, integrating task-
specific features beyond the (x, y, z) point coordinates is often key to perfect results. In the specific
setting of lung registration, working with image-based features or focusing on branching points could
be a way of improving performance at the cost of portability: recent works such as [52, 53] are
an excellent source of inspiration. Finally, we believe that high-quality software packaging is an
important part of research in our field. We intend to keep working on the topic and distribute our
methods through a user-friendly Python library for widespread use by the scientific community.
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A Supplementary Material

We provide additional information on our RobOT layer and the two derived methods:

• S-RobOT: feature matching with RobOT, followed by a smoothing that is implemented in
closed form or relies on an optimization loop – as detailed in Sec. 3.1.

• D-RobOT: S-RobOT as a pre- and post-processing tool for a deep deformation estimator –
as detailed in Sec. 3.2.

More specifically:

1. Sec. A.1 provides details on PVT1010, our dataset of pulmonary vascular trees.
2. Sec. A.2 describes our synthetic deformations for augmenting PVT1010.
3. Sec. A.3 contains more information on global feature matching with S-RobOT.
4. Sec. A.4 provides details on our deep deformation prediction approach D-RobOT, with

additional results on the PVT1010 and Kitti datasets.
5. Sec. A.5 discusses the differences between RobOT and nearest neighbor projection.
6. Sec. A.6 details our computational resources.
7. Finally, Sec. A.7 discusses the societal impact of our work.

A.1 Pulmonary vascular tree dataset

Introducing the PVT1010 dataset. We introduce a new pulmonary vascular tree dataset for point
cloud registration. The PVT1010 dataset includes 1,010 pairs of inhale/exhale lung vascular trees
extracted from 3D computed tomography (CT) images; 10 of these correspond to the 10 cases of the
public DirLab-COPDGene [19] dataset which includes, for each pair, 300 expert annotated landmarks
that are in correspondence with each other and that we use to validate our results. We extracted
the lung vascular geometry in both inspiratory and expiratory CT scans using a scale-space particle
system [34, 62] that is implemented in the Teem library [61]. We used the pipeline that is defined in
the chest imaging platform [83, 102].

Legal and regulatory information. The vascular tree reconstructions that are used in this study were
part of the COPDGene study (NCT00608764). This study has been IRB approved and participants
have provided their consent. The investigators from the Brigham and Women’s Hospital (Harvard
Medical School) only had access to de-identified CT images to perform vascular reconstructions.
Since we are performing secondary analysis using de-identified data, the work under consideration is
not considered human subjects research and did not imply additional risks to the participants. Risks
related to ionizing radiation exposure were described in the primary IRB-approved study. Study
identifiers were re-coded for our release of PVT1010 to preserve anonymity. PVT1010 is released
under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.

Point cloud representation. We now detail how we extracted the lung vascular trees as high-
resolution 3D point clouds from the raw CT images. To perform this geometric segmentation task, we
rely on a system of 4D particles that are defined by three spatial coordinates plus one scale parameter
that corresponds to the local radius of the lung vessel – these radii are used by RobOT as point
weights αi and βj in Eq. (2). Our segmentation method starts from a point cloud that is initialized
using the Frangi filter [42]. Then, we fit this point cloud representation to our 3D CT volumes by
minimizing iteratively a system energy that is expressed as the sum of:

• An inter-particle regularization energy that ensures convenient sampling properties. We
rely on a sum of quartic polynomials of the pairwise point distances, with a tunable potential
well that is chosen to induce regular sampling at a fixed distance between the points.

• A particle-image data fidelity term, which is computed using the image Hessian at the
current particles’ locations.

As a final result, we obtain points that are approximately equally distributed along the vessel
centerlines. The vessel radii are first approximated as the image scales at which the middle eigenvalues
of the Hessian are locally minimized, and then refined using the generative approach of [83].

The resulting dataset has the following properties, which result in a challenging registration task:
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1. The vascular trees have a complex structure and exhibit complex, large motions between
inhalation and exhalation.

2. To capture the complex anatomical structure of the lungs at millimeter scale, registration
methods need to focus on branching points or rely on high-resolution point clouds.

3. Due to the fixed image resolution of the raw CT volume and to acquisition differences
between the inhale and exhale scans, the extracted inhale and exhale vascular trees are
not fully consistent with each other. This is especially true for tiny structures at the lung
boundary, that may not be visible on the smaller lung images at exhalation time.

Sampling density, resolution. The original CT images from which we extract our point clouds are
acquired with a uniform resolution on the x, y and z axes: depending on the patients, the side length
of our voxels varies between 0.60 mm and 0.65 mm. Using the processing above, we turn these
volumetric images into 3D point clouds with 60k samples per lung vascular tree: depending on the
subject, the average sampling distance (from each point to its nearest neighbor in the 3D point cloud)
ranges between 0.6 mm and 1.0 mm.

We note that for our 10 test cases, the Dirlab annotations were performed on a down-sampled volume
with a resolution of 2.5 mm on the z axis. To guarantee a fair comparison between image-based and
point-based methods, we follow standard practice for this dataset (https://www.dir-lab.com/
Results.html) and report our results in Tab. 1 with a “snap-to-voxel” post-processing: we quantize
our 3D lung registrations on the original grids (with spacing ∼ 0.625 mm× 0.625 mm× 2.5 mm)
before computing the average errors and percentiles. In practice, we note that this quantization
slightly lowers the 25% percentile of the registration errors (as we “snap” many displacements to the
correct voxel or slice) but increases the 50% and 75% percentiles (some landmarks get “snapped” to
the wrong slice). Please note that in the Supplementary Material, we do not include this quantization
step for e.g. ablation studies: this allows us to study more precisely the impact of each layer in our
architecture.

Volume vs point cloud representation. We stress that our point clouds contain much less informa-
tion than the original 3D volumes from which they have been sampled. We discard all the intensity
(grayscale) values and only retain the sparse geometric support of the lung vascular tree – 60k points
out of 100M+ voxels. As a consequence, our registration task on 3D point clouds is significantly harder
than the original DirLab benchmark (https://www.dir-lab.com/Results.html). Whereas
optimization-based methods on the full CT volumes reach a nearly perfect accuracy of 0.60 mm to
1.00 mm with run times on the order of the minute [18, 19, 55, 56, 89, 90, 98, 99, 119, 120], our
point neural networks reach an average accuracy of 2 mm to 4 mm in one or two seconds.

The main purpose of our work on the PVT1010 dataset is to show that fast and accurate registration
is now at hand, even on very degraded anatomical data. This is of significant interest for clinical
practice: our method is suitable for real-time processing and has built-in robustness to changes
of the CT acquisition parameters that may affect the intensities of the raw image volumes. Going
forward, as detailed in the conclusion of our manuscript, we intend to work on improving the accuracy
of our method with a better sampling strategy and image-based features. Packaging our method as an
accessible Python toolbox will also open the door to a genuine multi-center evaluation of our trained
models.

A.2 Augmentation of the training dataset for vascular tree registration

We now describe how to augment the PVT1010 dataset with synthetic deformations in order to
create a large training set with dense ground truth annotations for lung registration. We proceed
in four steps: voxel-grid sampling; local deformation; global deformation; local property distortion
and degradation using an inconsistent sub-sampling. Our efficient implementation lets us generate
synthetic training pairs online – just like a standard data augmentation layer. We showcase our local
and global deformations in Fig. 6.

1. Voxel-grid sampling. To start, we use a voxel-grid strategy to re-sample the raw point clouds
with a standard sampling density. First, we subdivide the volume space into coarse 3D blocks with
spacing svoxelgrid = 0.03 mm. Second, we sort all points into these cubic bins according to their
(x, y, z) coordinates. Third, we compute one barycenter per cubic cell to down-sample the original
point cloud. Since we work with weighted point clouds, these local centroids are associated to the
sums of the weights of all points in the corresponding cells.
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2. Local deformation. We then sample control points from the vessel trees and generate random
displacements that we smooth using an anisotropic spline model:

1. We first sample C = 1, 000 spline control points xc uniformly at random from the point
cloud (x1, . . . , xN).

2. Second, we compute local covariance matrices for the distribution of points xi in a neigh-
borhood of each control point xc, using an isotropic Gaussian kernel window.

3. We compute the three eigenvalues (e1
c , e

2
c , e

3
c) and unit eigenvectors (v1

c , v
2
c , v

3
c ) of each

local covariance matrix to determine the main direction of the lung vessel. To avoid
rank deficiency, we use a lower threshold of 0.2 on the eigenvalues ekc . For each
control point xc, we then normalize the vector of three eigenvalues (e1

c , e
2
c , e

3
c) as

(e1
c , e

2
c , e

3
c)/
√

(e1
c)

2 + (e2
c)

2 + (e3
c)

2.
4. For each control point xc, we create a numerically stable anisotropic covariance matrix

Σc =
∑3
k=1(slocale

k
c )2 vkc v

k
c
>, where slocal = 4 mm is a positive scaling factor.

5. To obtain a robust estimation of the local covariance structure of our point cloud, we re-run
steps 2-4 with neighborhoods that are defined using an anisotropic Gaussian kernel window
of covariance Σc.

6. For every control point xc, we generate a random displacement vector ∆xc ∈ R3 such that
‖∆xc‖ 6 dlocal, drawn uniformly in the ball of center 0 and radius dlocal = 3 mm.

7. We smooth and interpolate the displacement vector field ∆xc from the control points xc to
the full point cloud {xi} using an anisotropic Nadaraya–Watson kernel interpolator:

xi ← xi +

∑C
c=1 kΣc

(xc, xi)∆xc∑C
c=1 kΣc

(xc, xi)
, (9)

where kΣc(xc, ·) is a Gaussian kernel with local covariance Σc. This anisotropic formula
ensures that the local connectivity structure of the lung vessel tree is preserved: the
displacement of points that belong to the same vessel are strongly correlated with each other.

3. Global deformation. The step above simulates local relative displacements between lung vessels.
To take large-scale breathing movements into account, we apply a second spline deformation which
is smoother but has a larger magnitude. In practice, we use a voxel-grid sampling with spacing
resolution sglobal = 90 mm to obtain control points. We then generate random displacements of
magnitude at most dglobal for every control point, and interpolate them to the full point cloud using a
Nadaraya–Watson estimator, parameterized by an isotropic Gaussian kernel with standard deviation
σglobal.

4.a. Radius distortion. Having altered the 3D coordinates of our points using the deformations above,
we add random noise to the local estimates αi of the vessel radii – which are encoded as additional
point features as detailed in Sec. A.1 and used in our RobOT layer as point weights. This additive
noise is scaled by a positive parameter sradius = 0.1 and drawn at random in [−sradiusαi, sradiusαi].

4.b. Inconsistent sampling. By construction, the steps above let us create an arbitrary number of
pairs of (real, simulated) lungs with known pairwise correspondence between all points. In order to
simulate acquisition artifacts and introduce challenging inconsistencies, we sample N = M = 60k
points at random from the source and the synthetic (target) point clouds as a last generation step. We
note that for training, the ground-truth flow is computed based on the source sampling and is not
affected by this last degradation: it may or may not point to a sample in the synthetic target.

Augmentation of the the target and source point clouds. In our experiments, we generate our
target point clouds using dglobal = 25 mm, σglobal = 25 mm. Additionally, we also perform data
augmentation for the source point cloud itself using the smaller values of dglobal = 8 mm and
σglobal = 15 mm.
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(a) Real source. (b) Local kernels. (c) Coarse control points.

(d) Synthetic target. (e) Local perturbation, source. (f) Global deformation, source.

Figure 6: Local and global deformations that we use to generate our synthetic training dataset.
(a) Original (real) vascular tree. (b) Ellipsoids that represent anisotropic kernels of size 2 mm that we
use to generate vessel-preserving local deformations. Note that in our experiments, we use larger
kernels of size 4 mm that induce a stronger regularization but are harder to display cleanly. (c) Spline
control points that we sample using a voxel-grid scheme with 90 mm spacing and use to generate a
global deformation. (d) Synthetic vascular tree, the output of the process that we use as a target for
training. (e) Source point cloud after local deformation. (f) After global deformation.

(a) Source. (b) Target. (c) FilterReg, 
target.

(d) S-RobOT, 
target.

(e) S-RobOT 
weights.

Figure 7: Partial rigid registration of the Stanford scans based on the matching of FPFH features –
as discussed in Sec. 3.1 and Suppl. A.3.1. The feature-based CPD model FilterReg falls in a local
minimum while the rigid S-RobOT of Eq. (5) results in a successful registration. In the last column,
we display the attention weights wi that are derived from unbalanced OT.
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(a) Source. (b) Spline. (c) LDDMM. (d) RobOT. (e) Target.

Figure 8: Smooth RobOT (S-RobOT) on a toy registration problem, the deformation of a sphere
(left) onto a cube (right). From left to right, we display: (a) the source shape A = (x1, . . . , xN);
(b) the output of Spline RobOT from Eq. (7); (c) the output of LDDMM RobOT, solution of the
optimization problems of Eq. (8,10); (d) the output of the “raw” RobOT matching xi 7→ xi + vi from
Eq. (4); (e) the target shape B = (y1, . . . , yM).

Rotation Translation
MSE RMSE MAE MSE RMSE MAE

Method degrees2 ↓ degrees ↓ degrees ↓ 3D units2 ↓ 3D units ↓ 3D units ↓
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g ICP 1134.552 33.683 25.045 0.0856 0.293 0.250
FGR [134] 126.288 11.238 2.832 0.0009 0.030 0.008
Go-ICP [130] 195.985 13.999 3.165 0.0011 0.033 0.012
S-RobOT (rigid) 2.411 5.814 1.245 0.0002 0.014 0.009

E
nd

-t
o-

en
d PointNetLK [2] 280.044 16.735 7.550 0.0020 0.045 0.025

DCP(v2) [121] 45.005 6.709 4.448 0.0007 0.027 0.020
PRNet [122] 10.235 3.199 1.454 0.0003 0.016 0.010
Partial-OT [28] 0.107 0.328 0.052 3.384e-06 0.00183 0.0003

Table 2: Partial-to-Partial registration with unseen objects on ModelNet40.

Rotation Translation
MSE RMSE MAE MSE RMSE MAE

Method degrees2 ↓ degrees ↓ degrees ↓ 3D units2 ↓ 3D units ↓ 3D units ↓

M
at

ch
in

g ICP 1217.618 34.894 25.455 0.086 0.293 0.251
FGR [134] 98.635 9.932 1.952 0.0014 0.038 0.007
Go-ICP [130] 157.072 12.533 2.940 0.0009 0.031 0.010
S-RobOT(rigid) 50.997 7.142 4.012 0.0005 0.022 0.013

E
nd

-t
o-

en
d PointNetLK [2] 526.401 22.943 9.655 0.0037 0.061 0.033

DCP(v2) [121] 95.431 9.769 6.954 0.0010 0.034 0.025
PRNet [122] 24.857 4.986 2.329 0.0004 0.021 0.015
Partial-OT [28] 0.127 0.357 0.069 3.953e-06 0.002 0.0004

Table 3: Partial-to-Partial registration with unseen categories on ModelNet40.
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A.3 Additional material on S-RobOT and global feature matching

A.3.1 Partial registration

Experiment 1: Stanford scans. We now discuss a toy example, illustrated in Fig. 7, that showcases
the benefits of unbalanced optimal transport theory for partial rigid registration. We normalize and
resample the partial Stanford scans using a voxel-grid sampling with 0.005 spacing. We then rotate
every source shape by (120°,10°,10°) degrees to create a target shape. We illustrate two methods:

• As a baseline competitor, we use the FilterReg [44] implementation of https://github.
com/neka-nat/probreg (a feature-based CPD method [81]) with noise ratio set to 0.7 and
an automatic annealing strategy based on the Expectation-Maximization (EM) algorithm.

• For our rigid S-RobOT registration, we first compute a 33-dimensional FPFH feature vector
[100] for each point using a radius of 0.02 for the normal search and a radius of 0.05 for the
feature search. We then rely on Eqs. (4-5) to compute the weighted RobOT matching and
project it onto the space of rigid transformations. For our robust OT problem, we set the
blur parameter to 0.1 and the reach parameter to 2 units in R33.

Results. Given standard FPFH features [100], our RobOT approach successfully registers the low-
overlap pair while FilterReg [44] fails. The RobOT confidence weights wi of Eq. (4) naturally act as
an attention mechanism.

Experiment 2: ModelNet40. Going further, we evaluate our partial registration strategy S-RobOT
on the standard dataset ModelNet-40 [127] with comparisons to state-of-the-art methods. Instead
of relying on FPFH features, we use a self-supervised deep feature learning strategy to increase
the robustness and accuracy of the registration. The ModelNet40 dataset contains 12,311 CAD
(Computer-Aided Design) models, from 40 object categories. We follow the same experimental setup
as in [28, 122]:

1. We normalize the point clouds to fit in the cube [−1, 1]3.

2. To generate a registration pair, we first sample a random source shape using 1,024 points.
We then apply a random rigid transformation along each axis, with rotation angle in [0◦, 45◦]
and translation in [−0.5,+0.5].

3. To simulate a partial acquisition, we sample one point at random in both of the source and
target shapes. In each shape, we then keep the 768 nearest neighbors of these points to
define the observed regions.

Evaluation metrics. To assess the quality of our rigid registrations, we evaluate the rotation and
translation errors separately. On each component, we compute the mean squared error (MSE), the
root mean squared error (RMSE) and the mean absolute error (MAE).

S-RobOT setup. For feature learning, we proceed in two steps:

1. Given a source point cloud, we synthesize a target point cloud by applying a random rigid
transform. For convenience, we re-use the augmentation strategy detailed above: along each
axis, we sample a rotation in [0◦, 45◦] and a translation in [−0.5,+0.5].

2. We train a self-supervised deep feature extractor using the loss function of Sec. A.3.3.
We use a PointNet++ [93] with 10,654 parameters that learns a 30-dimensional feature
vector for each point.

For the S-RobOT matching, we rely on the rigid projection formula of Eq. (5); we set the blur
parameter to σ = 0.01 and the reach parameter to τ = 10 units in R30.

Partial-to-Partial registration with unseen objects. We follow [28, 122] and split the dataset of
12,311 point clouds into a training set with 9,843 shapes and a testing set with 2,468 shapes. We first
train on all 9,843 shapes from all 40 categories in the training set and test on all 2,468 unseen shapes
in the test set. In Table 2, we compare S-RoboT with feature matching methods (ICP, FGR [134],
Go-ICP [130]) and end-to-end deep learning models (PointNetLK [2], DCP(v2) [121], PRNet [122]
and Partial-OT [28]).
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Partial-to-Partial registration with unseen categories. We then follow [122] and test the gen-
eralization ability of our model between object categories: we train on the first 20 categories of
ModelNet40 and test on the remaining 20 categories. We report these results in Tab. 3.

Results. Overall, we observe that the unsupervised Rigid S-RobOT method performs much better
than traditional approaches and is close to end-to-end methods. Since our main focus is on free-
form registration, we do not push these experiments further: we use Affine and Rigid S-RobOT as
pre-alignment steps and are satisfied with this level of performance.

We note that the best-performing method Partial-OT also relies on an optimal transport layer: as
discussed in [105], partial OT is a very close cousin of the theory of unbalanced OT that we leverage
in our RobOT layer. We understand the Partial-OT method as a supervised and end-to-end version of
our S-RobOT baseline. Both [28] and this manuscript thus show that optimal transport theory is
ready to be part of the standard toolbox in our field, with state-of-the-art performance in varied
and complementary application settings.

A.3.2 Diffeomorphic registration

Background on LDDMM. Going beyond rigid and affine transformation models, the Large Defor-
mation Diffeomorphic Metric Mapping (LDDMM) framework captures large, smooth and invertible
deformations in a principled way [5]. This fluid-based model is standard in computational anatomy,
especially for applications to neuroimaging where the preservation of shape topology is a key
registration prior [35].

In the LDDMM model, deformations are encoded via the integration of a time-varying velocity field
vt = d

dtx
t over the unit time interval t ∈ [0, 1]. Given any two shapes A and B to register with each

other, we seek a geodesic path (vt)t∈[0,1] for a chosen Riemannian metric ‖v‖2K that is induced by a
convolution kernel Kx over the space of vector fields v : R3 → R3.

Following standard derivations from optimal control theory [5, 35, 54], we know that plausible
deformations are fully parameterized by the momentum m0 : R3 → R3 at time t = 0, a vector field
that acts as the parameter “θ” of the LDDMM deformation model. In the LDDMM framework, the
optimization problem of Eq. (8) reads:

θ∗ = m0∗ = arg min
m0:R3→R3

λreg 〈m0,Kx ∗m0〉L2(R3,R3)︸ ︷︷ ︸
Regularization.

+

N∑
i=1

wi‖xi + vi −Morph(m0, xi)‖2R3︸ ︷︷ ︸
Fidelity to the data.

,

(10)
where the deformation model Morph : (m0, x0

i ) 7→ x1
i is computed through the integration of the

geodesic shooting equation:
d
dtx

t = +∂H
∂m

(
xt,mt

)
, d
dtm

t = −∂H∂x
(
xt,mt

)
(11)

from time t = 0 to time t = 1 for the Hamiltonian H(x,m) = 1
2 〈m,Kx ∗m〉L2(R3,R3). We refer to

Chapter 5 of [35] for a presentation and implementation of these equations on point clouds with the
PyTorch and KeOps libraries.

Black-box deformation models. Different transformation models may result in different projection
results. In Fig. 8, we show several smooth RobOT (S-RobOT) results for spline and LDDMM models
on a toy registration task.

Experiment. The source sphere (left) and the target cube (right) are sampled with N = 1, 922 and
M = 1, 538 points respectively. We normalize their coordinates to be contained in [−1, 1]3 and
normalize the point cloud weights to sum up to one (αi = 1/1, 922 and βj = 1/1, 538 so that∑1,922
i=1 αi =

∑1,538
j=1 βj = 1). For the initial RobOT matching, we set the blur parameter to 0.005

units in R3 and the reach parameter to +∞ (balanced OT). For the following spline and LDDMM
regularizations, we use a multi-Gaussian-kernel with standard deviations {0.05, 0.2, 0.3} and weights
{0.2, 0.3, 0.5}, i.e. a kernel function:

k(x, y) = 0.2 · exp
[
− ‖x− y‖2R3/(2 · 0.052)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 0.22)

]
(12)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 0.32)

]
.
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Results. We make two important observations:

• As evidenced by the disappearance of the polar sampling pattern in the fourth column,
the raw RobOT matching xi 7→ xi + vi provides a “perfect fit” to the target but does not
preserve the topology of the source point cloud. The spline and the LDDMM approximations
alleviate this problem: they smooth the weighted RobOT matching to combine accuracy with
topology preservation and, in the case of the LDDMM model, guarantees of invertibility.

• The spline and the LDDMM model both result in smooth deformations. But crucially,
the LDDMM model is more suited to large deformations and provides a better fit to the
corners of the target cube. We note that workarounds exist for the over-smoothing of the
second (spline) column: at the cost of an increased sensitivity to noise, singular kernels
[109] or ridge regression methods [10] allow spline models to get a closer fit to the target.
For medical applications, the key benefit of LDDMM is that it provides strong guarantees on
the invertibility of the deformation: we refer to Chapter 5 of [35] for a detailed discussion.
In the remainder of this work, we benchmark both spline and LDDMM deformation models
whenever relevant. We observe that diffeomorphic LDDMM registrations perform better on
e.g. lung data, but stress that such comparisons are task-dependent.

A.3.3 Deep feature learning

Feature learning on 3D point clouds. As discussed above, (x, y, z) coordinates or standard FPFH
features can be good enough to handle simple shapes and deformations. On challenging settings
however, learning task-specific features is often key to high performance.

In Sec. 3.2 and Suppl. A.4, we present our best-performing solution to this problem: the D-RobOT
architecture. In this section, we discuss an alternative approach that decouples feature learning
and matching. In practice, we did not obtain competitive results with this method. Nevertheless,
using a separate feature extractor may increase interpretability and ease deployment issues in medical
scenarios: we believe that this line of work is worth pursuing and provide full details on our
experiments.

Let us process a synthetic pair of point clouds with N points in correspondence with each other –
N = 60, 000 in our experiments for lung registration. Instead of sampling positive and negative
samples, which is common for contrastive loss functions, we choose to rely on N×N correspondence
matrices that take all possible point pairs into account. We use the KeOps library [37] to manipulate
these objects efficiently, with extremely fast run times and without memory overflows.

Specifically, we train our feature extraction network as follows:

1. Input data. We assume that we are given two point clouds (x1, . . . , xN) and (y1, . . . , yN)
that are in pairwise correspondence with each other. In our experiments, these are typically
the output of a synthetic “data augmentation” procedure: the Flying3D objects for the Kitti
benchmark and our synthetic lung pairs for the Dirlab benchmark.

2. Feature extraction. We apply the feature extractor (a trainable point neural network) on
both point clouds, independently from each other. We retrieve point features pi and qi in RD

that are respectively associated to the points xi and yi.
3. Feature normalization. As discussed in Sec. 2.1, we normalize the feature vectors so that
‖pi‖RD = ‖qi‖RD = 1. This prevents the feature extractor from converging to degenerate
solutions and ensures that our hyper-parameters for the RobOT problem of Eq. (2) can be
interpreted as sensible scales in RD.

4. Source self-similarities. We compute the N × N correspondence matrix for the point
positions in the source point cloud:

c(xi,xj) = softmaxN
j=1(−‖xi − xj‖2R3/2κ2) =

exp(−‖xi − xj‖2R3/2κ2)∑N
j=1 exp(−‖xi − xj‖2R3/2κ2)

, (13)

where the Softmax denotes a mirrored exponential followed by a normalization over the
rows of the correspondence matrix while κ > 0 is a scaling factor. Each row of the matrix
c(xi,xj) then refers to a probability distribution, a position heatmap with a peak at point xi
whose radius is proportional to κ.
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Figure 9: Deep feature extractor for our S-RobOT experiments. We adapt this feature pyra-
mid network from PointPWC-Net [126]. We implement a four-scale U-net [95] architecture using:
point-wise multi-layer perceptrons on the feature embeddings (with LeakyReLU non-linearities);
PointConv [125] for downsampling and gathering information from the neighbors; K-Nearest Neigh-
bor interpolation for upsampling.
Please note that this architecture relies on the point coordinates (x, y, z) to define the PointConv
convolution and the upsampling layer. In our experiments for lung registration, we use the local vessel
radius as our only input feature: this corresponds to using a single input channel on the left-most
layer of the figure above.

5. Feature correspondences. Similarly, we compute a correspondence matrix for the source
and target features:

c(pi,qj) = softmaxN
j=1(−‖pi − qj‖2RD) . (14)

Each row of c(pi,qj) is a feature heatmap that indicates how well pi corresponds to qj .
6. Training loss. Our total loss is the sum over the cross entropies for each row:

CE(c(xi,xj), c(pi,qj)) = −
N∑
i=1

N∑
j=1

c(xi,xj) log c(pi,qj) . (15)

We optimize it by stochastic gradient descent over the parameters of the feature extraction
network (step 2).

Hyper-parameters. For feature learning, we use a U-net structured PointConv [125] architecture
with 7M parameters that is illustrated in Fig. 9. At the feature learning stage, we set κ (described
above) to

√
2 mm. For each point we learn a 15 dimensional feature vector of unit length. For the

RobOT feature matching, we set the blur parameter to σ = 0.01 units in R15 and the reach parameter
to ρ = +∞ (balanced OT). As discussed in Suppl. A.4.2, we benchmark two types of S-RobOT
regularization:

1. The spline smoothing of Eq. (7), using a Gaussian (RBF) kernel with a standard deviation
of 5 mm.

2. An LDDMM deformation model that we optimize as in Eq. (8) using an SGD solver. We use
a multi-Gaussian-kernel with standard deviations {5, 8, 10} mm and weights {0.2, 0.3, 0.5}.

A.4 Additional material on deep deformation prediction

We now provide full details on our D-RobOT architecture and additional experiments on scene flow
estimation and lung registration.

A.4.1 Deep registration module

Architecture of the prediction network. In Sec. 3.2, we rely on a modified PointPWC-Net to
act as a predictor Pred : (xi, yj) 7→ θ. This multiscale point neural network takes as input the
source and target point clouds. It returns a high-dimensional parameter θ for the deformation model
Morph : (θ, xi) 7→ ŷi. In this work, the predicted θ is always a 3D vector field that is supported by

26



the points xi (for the raw displacements model) or by a collection of control points ci that have been
generated by farthest point sampling (for the spline and LDDMM models).

We describe our modifications to the original PointPWC-Net architecture in Fig. 10. In order to
define a network that can predict spline and LDDMM parameters:

1. We replace the flow prediction layer of PointPWC-Net by a suitable prediction layer for
registration parameters.

2. We use an asymmetric hierarchical architecture that outputs registration parameters for
the control points ci. Since the number of control points is often much smaller than the
number of points in the input point cloud, this reduces the memory footprint of our network
architecture.

Losses. We use synthetic data pairs for training: for scene flow estimation on Kitti, we rely on the
synthetic Flying3D dataset; for lung registration, we rely on the two-scales simulator of Suppl. A.2.
In both cases, we thus have access to ground truth deformations and can rely on a supervised learning
strategy. Let us consider a PointPWC-Net with L scales, and denote by (xl1, . . . , x

l
Nl

) the subsampled
input for the l-th scale. For training, we compute a multi-scale similarity loss as:

Loss(ŷi) =
∑L−1
l=0 W

l
∑
i wi · ‖ ŷli − yli ‖22 , (16)

where l ∈ {0, . . . ,L} is a scale (l = 0 corresponds to the raw point clouds), W l is a scalar hyper-
parameter that we use as a total weight for the l-th scale, ŷli is the output of the network that
corresponds to the flowed xli at the l-th scale and yli denotes the ground truth target that corresponds
to the same point xli with weight wi. Note that at the finest scale, we compute ŷ0 using a task-specific
deformation model, Morph : (θ, xi)→ ŷi.

A.4.2 Experiments on lung vascular trees

We now provide more details on our experiments for lung registration, which are illustrated in
Fig. 11 with a visualization of landmark errors in Fig. 13. Notably, we discuss both supervised and
unsupervised training strategies as well as the influence of the deformation model Morph : (θ, xi) 7→
ŷi on the D-robot architecture.

Synthetic data vs unsupervised learning. To overcome the lack of dense 3D annotations on real
shape data, we advocate the use of simulated deformations and synthetic training datasets. As
detailed in Sec. 3.2, we observe that D-RobOT networks are easy to train to a high level of accuracy:
RobOT-based post-processing and fine-tuning help our models to bridge the domain gap between the
synthetic and real distributions of shapes.

We would like to stress that our focus on synthetic training datasets to the detriment of e.g. unsuper-
vised approaches results from careful and extensive experiments. In the lead-up to the publication
of this work, we tried several competing approaches to train our registration networks: supervised
learning with dense correspondences on synthetic data; “unsupervised” learning on unannotated point
clouds using geometric loss functions between point sets; a mix of both approaches. In practice,
supervised learning on synthetic data clearly emerged as the most practical option for challenging
registration tasks. Let us briefly explain why.

Unsupervised loss functions. When dense pointwise correspondences are not available, a popular
strategy to train registration methods is to rely on permutation-invariant loss functions between point
clouds. We refer to Chapters 3 and 4 of [35] for an introduction to the topic.

Since our PVT1010 dataset contains 1,000 pairs of lung vessel trees that are in correspondence
with each other (inspiration/expiration) but for which no expert-annotated landmarks are available,
we are in a perfect situation to try out these tools. We thus attempted to train our networks using
local Laplacian matching [126], Maximum Mean Discrepancies, Gaussian Mixture Models (GMM)
as well as Wasserstein distances [35] on (x, y, z) coordinates. Unfortunately, we never succeeded
in converging to a competitive level of accuracy. We believe that this is due to the complex
geometric structure of the lung vascular trees, which are significantly more intricate than the
clean point clouds and surface meshes on which these methods are usually tested [36, 40].

Combining synthetic (supervised) and real (unsupervised) data. Going further, we also tried to
use a mixed strategy: in our training dataset, we combined synthetic deformations of real source
shapes (that can be handled using a mean square error) with genuine target point clouds (that can be
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(a) Multiscale prediction architecture. (b) Architecture of a PointPWC block.

Figure 10: Architecture of our deep prediction network Pred : (xi, yj) 7→ θ, which is adapted
from PointPWC-Net [126]. The original PointPWC-Net architecture is a multi-scale network that
predicts 3D scene flow (a raw displacement field) in a coarse-to-fine fashion. We modify this state-
of-the-art architecture to make it suitable for registration with a task-specific deformation model
Morph : (θ, xi) 7→ ŷi.
a) First of all, we compute feature pyramids at scales L0 to L4 using farthest point sampling and
PointConv layers [125] on the source and target shapes (left and right columns) – see Fig. 5 in [126].
In our experiments, we always use C = 4, 096 or C = 8, 192 control points. The key design decision
behind the PointPWC-Net architecture is to run through this pyramid from the coarsest scale (L4) to
the finest one (L0, the original point clouds) in order to predict the final 3D scene flow: we represent
this coarse-to-fine prediction as a stack of PointPWC blocks (central column).
b) Those blocks share the same architecture (but not the same neural weights): an upsampling layer
that interpolates our 3D vector fields from the coarser to the finer scale using an inverse distance
spline kernel; another upsampling layer that interpolates the pyramid features at the coarsest scale; a
warp layer that deforms the source shape according to the up-sampled 3D flow, allowing the network
to focus on residual deformations at each scale; a cost “volume” layer, detailed in Fig. 2 of [126],
which relies on K-NN neighborhoods and PointConv layers to merge the source and target features
into a vector of “patchwise” discrepancies for every point in the (subsampled and warped) source
shape; a prediction PointConv and Multi-Layer Perceptrons (MLP), detailed in Fig. 6 of [126], that
turns this vector of discrepancies into a predicted correction for the up-sampled 3D flow.
Please note that this architecture relies on the point coordinates (x, y, z) in the PointConv and
upsampling layers. For our scene flow experiments, we use the (x, y, z) coordinates as input to the
network: this corresponds to “Source” and “Target” arrays that have 3 input channels. For our lung
registration experiments, we also add the local vessel radius as a fourth feature and thus use 4 input
channels. We stress that in our RobOT-based pre-alignment and post-processing (steps 1 and 3 of
the D-RobOT architecture), we rely on the (x, y, z) coordinates as point features pi and qj in Eq. (2).
When available, the vessel radii are only used as point weights αi and βj in the RobOT problem.
In all our experiments, the parameter θ is a 3D vector field that has the same memory footprint as a
“raw” 3D scene flow supported by our control points: this corresponds to using 3 output channels on
the C control points. Our main modification to the original PointPWC-Net architecture is to handle
this registration parameter (purple) in parallel with the usual scene flow (sky blue): the final
prediction module of every PointPWC block runs two estimations in parallel, which share the same
PointConv layer and are equivalent to Fig. 6 in [126].
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handled using e.g. the Wasserstein distance). We expected that this combination would narrow the
domain gap between our synthetic deformations and the real breathing movement. In practice, this
strategy produced indecisive results:

• On the one hand, assuming that we only have access to a simple deformation model (e.g.
a single-scale random field), this mixed training strategy improves the accuracy of our
registrations. This is especially true when the synthetic deformations are not diverse enough.

• On the other hand, assuming that we have access to the more realistic and expressive
deformation model of Suppl. A.2, the introduction of real but not annotated pairs in the
training loop proves slightly detrimental to performance. We observe a small increase of
about 0.2mm in landmark Root Mean Squared Error (RMSE).

For the sake of simplicity, we thus trained our final D-RobOT network entirely on synthetic defor-
mations. We found that using RobOT as a final post-processing layer in the D-RobOT pipeline is
enough to address prediction errors effectively and compensate for a small domain gap between
synthetic and real deformations.

Raw displacements vs spline and LDDMM regularizations. In Fig. 12, we further compare the
D-RobOT results for three different deformation models. Our main observations are that:

• A deep prediction module that returns raw displacements ∆xi with a naive deformation
model Morph : (θ = ∆xi, xi) 7→ ŷi = xi + ∆xi may produce non-smooth registration
results. This holds even when the network is trained entirely on smooth, synthetic defor-
mations. On the other hand, the regularizing spline and LDDMM models always result in
smooth deformations. This vindicates the use of explicit regularizing models in safety-
critical applications: we cannot trust our networks to “learn smoothness properties” from
the data.

• According to Fig. 12 and Tab. 4, the LDDMM model captures large deformations better
than the spline model. However, we obtain similar performance with both spline and
LDDMM models after the (affordable) RobOT post-processing step: fine-tuning with
RobOT alleviates the need for complex and expensive deformation models.

Experiments. We now provide detailed hyperparameters for the D-RobOT architecture in our lung
registration experiments. As detailed in Sec. 3.2, the full model applies successively: an affine
S-RobOT pre-alignment; a deep non-parametric registration; and a spline S-RobOT post-processing.

1. Affine registration. For affine pre-alignment, we use the S-RobOT model of Eq. (6) with raw
(x, y, z) coordinates as input features in R3. The vessel radii are taken into account as point weights
αi and βj . In the RobOT problem of Eq. (2), we set the blur parameter to σ = 1 mm and the reach
parameter to τ = +∞ (balanced OT with strong constraints on the marginals).

2. Deep non-parametric registration. We evaluate three deformation models Morph : (θ, xi) 7→ ŷi:

1. Raw displacements correspond to the case where the parameter θ = ∆xi is a 3D vector
field that is supported by the point xi and the deformation model is the addition:

Morph : (∆xi, xi) ∈ RN×3 × RN×3 7→ xi + ∆xi ∈ RN×3 . (17)
As a regularization penalty, we use the squared Euclidean norm:

Reg(∆xi) = 1
N

∑N
i=1 ‖∆xi‖2R3 . (18)

2. The spline model corresponds to the case where the parameter θ = ∆cl is a 3D vector field
that is supported by a set of control points (c1, . . . , cC) in R3. As a deformation model, we
use a simple kernel smoothing:

Morph : (∆cl, xi) ∈ RC×3 × RN×3 7→ xi +
∑C
l=1 k(xi, cl)∆cl ∈ RN×3 . (19)

As a regularization penalty, we use the squared Euclidean norm:

Reg(∆cl) = 1
C

∑C
l=1 ‖∆cl‖2R3 . (20)

For our lung experiments, we always use a multi-Gaussian kernel with standard devia-
tions {3, 6, 9} mm and weights {0.2, 0.3, 0.5}. With the coordinates of points x and y in
millimeters, this corresponds to the positive definite kernel function:
k(x, y) = 0.2 · exp

[
− ‖x− y‖2R3/(2 · 32)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 62)

]
(21)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 92)

]
.
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3. The diffeomorphic LDDMM model is equivalent to a spline deformation with continuous
time. Notably, we use the same kernel k(x, y) as in the spline model above. As detailed
in Suppl. A.3.2 and Chapter 5 of [35], the parameter θ = m0

l is a 3D vector field that
is supported by a set of control points (c1, . . . , cC) in R3. As a deformation model, we
use an iterative kernel smoothing and deformation layer that corresponds to a numerical
integration scheme for the Ordinary Differential Equation (11). More specifically, we use
the differentiable Dopri-5 layer that is provided by the TorchDiffEq library [22, 23], which
implements the Dormand-Prince or Runge-Kutta 4(5) integrator [32] with 20 time steps from
time t = 0 to time t = 1. For a simpler implementation, we refer to the Euler integration
scheme that is detailed in [35], Algorithm 5.6. As a regularization term, we use the squared
kernel norm:

Reg(∆cl) = 1
C

∑C
l=1

∑C
s=1 k(cl, cs)〈m0

l ,m
0
s〉R3 . (22)

For the deep prediction network Pred : (xi, yj) 7→ θ, we use the 4-scale hierarchical architecture
that is described in Suppl. A.4.1 and set the scale weights W l to {1.0, 0.8, 0.4, 0.2}. We compute
the 4-scale decompositions of the point clouds using Farthest Point Sampling. For all models, we
promote a close fit to the target shape and weight the regularization term Reg(θ) by 1/100 in the
training loss:

Loss(xi, yi, θ) = 1
100 Reg(θ) +

∑L−1
l=0 W

l
∑
i wi · ‖ ŷli(θ, xi) − yli ‖2R3︸ ︷︷ ︸

Multiscale loss of Eq. (16)

. (23)

We recall that in the expression above:

1. The weights wi are attached to the points xi and are proportional to the vessel radius.
2. The weights W 0, W 1, W 2 and W 3 put a strong emphasis on the finest scales.
3. Each point yli corresponds to the ground truth target for xi at scale l.
4. Each point ŷli(θ, xi) corresponds to the output of our prediction and deformation networks

at scale l for xi. As detailed in Fig. 10, the finest-scale output ŷ0
i (θ, xi) = Morph(θ, xi)

corresponds to our model-based deformation; the larger-scale predictions ŷ1
i (θ, xi), ŷ2

i (θ, xi)
and ŷ3

i (θ, xi) correspond to raw displacements and are only used in Eq. (23) to make the
training easier [126].

3. Postprocessing. To fine-tune our registration, we use the spline S-RobOT deformation of Eq. (7)
with (x, y, z) coordinates as input features in R3. We set the blur parameter to σ = 0.1 mm and
the reach parameter to τ = 10 mm. For smoothing, we use the vessel-preserving anisotropic kernel
k(x, y) of Sec. A.2 with a kernel scale slocal = 8 mm. In order to get a closer fit to the target, we
apply this post-processing step twice for all lung registration results.
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D-RobOT (raw) D-RobOT (spline) D-RobOT (LDDMM)
Post-processing mm ↓ mm ↓ mm ↓
Without post-processing 3.46 (3.13) 4.45 (4.10) 3.33 (3.09)
NN projection 3.33 (2.96) 3.32 (3.05) 3.31 (2.96)
RobOT 3.35 (3.04) 3.18 (3.01) 3.19 (3.01)
NN projection + Smoothing 3.32 (2.95) 3.08 (2.82) 2.95 (2.64)
RobOT + Smoothing 3.33 (2.99) 2.94 (2.71) 2.83 (2.40)

Table 4: Ablation study on the post-processing module. We assess the influence of the fine-tuning
step in the D-RobOT model. As an addendum to Tab. 1, we display the Root Mean Squared Error
in millimeters (median of the 10 subjects in parentheses) for expert-annotated landmarks on the 10
Dirlab lung pairs, that we use as a test set for PVT1010. The first row corresponds to the output of the
deep registration module, without any fine-tuning. The second row corresponds to a nearest neighbor
projection on the target point cloud. The third row corresponds to the “raw” RobOT matching of
Eq. 4, extrapolated to the landmarks using a Nadaraya-Watson spline with an isotropic Gaussian
kernel of deviation σ = 0.5 mm. In the fourth and fifth rows, we use a vessel-preserving anisotropic
kernel to smooth a nearest neighbor projection (fourth row) and our RobOT matching (fifth row).

Pre- Deep Post- Number of Number of RMSE
Method alignment prediction processing points control points mm ↓
Input data None 60k —- 23.32
Affine 3 None 60k —- 10.31

FlowNet3D
FLOW 30k 4,096 8.20

3 FLOW 30k 4,096 7.08
3 FLOW 3 30k 4,096 6.51

D-RobOT

3 PWC∗ 30k 4,096 4.10
PWC∗ 60k 4,096 4.64

3 PWC∗ 60k 4,096 3.82
3 PWC∗ 60k 8,192 3.33
3 PWC∗ 3 60k 8,192 2.83

Table 5: Ablation study for the D-RobOT model (with LDDMM deformations) on the lung
registration task. We benchmark the Root Mean Squared Error on the 10 × 300 pairs of DirLab
landmarks for a wide range of configurations. We investigate the influence of affine S-RobOT pre-
alignment (column 2); spline S-RobOT fine-tuning (column 4); the sampling rate for the input data
(column 5); and the number of control points for the LDDMM deformation model (column 6). As
a backbone architecture for the deep prediction network, we use a FlowNet3D (rows 3-5) and the
modified PointPWC-Net of Fig. 10 (rows 6-10).

Method Prealign Post EPE3D Acc3DS Acc3DR Outliers3D EPE2D Acc2D
cm ↓ % ↑ % ↑ % ↓ px ↓ % ↑

81
92

po
in

ts PWC [126] 6.78 78.58 90.30 23.61 2.6484 82.36
PWC 3 4.62 83.24 94.91 19.61 2.1411 86.82
PWC 3 3 4.76 82.16 94.53 20.10 2.0716 87.59
D-RobOT 3 4.63 79.13 95.30 21.43 2.3930 82.93
D-RobOT 3 3 4.55 80.27 94.85 20.65 2.1404 85.24

30
k

po
in

ts PWC [126] 7.90 61.33 89.75 29.36 4.0558 65.35
PWC 3 5.94 72.62 92.26 25.79 3.1817 72.82
PWC 3 3 3.99 86.44 95.02 18.59 1.9592 86.09
D-RobOT 3 2.94 92.86 98.59 16.05 1.5733 91.86
D-RobOT 3 3 2.15 95.74 98.96 12.93 1.1118 95.66

Table 6: Ablation study on the modules of D-RobOT (with spline deformations) and the influence
of the point sampling rate, performed on the 57 largest scenes from the Kitti dataset. As detailed
in Suppl. A.4.3, these results correspond to average values on the 57 (out of 142) pairs of 3D scenes
that are sampled with more than 30k points per frame in the original Kitti dataset. This allows us to
focus our evaluation on the most challenging 3D scenes, with under-sampling artifacts: as expected,
performance is lower than in the “full” Kitti benchmark of Fig. 4.
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(a) Source. (b) D-RobOT. (c) Target. (d) D-RobOT, target.
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Figure 11: Additional results for lung vascular trees. Columns refer to: (a) the source shape
(expiration); (b) the registration result from D-RobOT using the LDDMM deformation model; (c)
the target shape (inspiration); (d) an overlap between the D-RobOT registration and the target. Each
row corresponds to a patient, with names that refer to case IDs in the original DirLab dataset.
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(a) Output of the deep 
registration (step 2).

(b) Output of step 2,
target.

(c) Output of step 3, 
target.
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Figure 12: D-RobOT results for different deformation models Morph : (θ, xi) 7→ ŷi. (a) The
first two columns correspond to the output of our deep registration module (without post-processing);
(b) the third column also includes the target shape, displayed as a blue point cloud; (c) the fourth
column showcases our final result, with RobOT-based post-processing. As detailed in Suppl. A.4.2,
we observe that: (i) the spline and LDDMM models produce smooth registration results; (ii) before
the RobOT post-processing step, LDDMM provides a better fit than the spline model; (iii) after
post-processing, all three deformation models produce “sharp” results, with smoothness guarantees
for the spline and LDDMM models.
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(a) COPD 1. (b) COPD 2. (c) COPD 3. (d) COPD 4. (e) COPD 5.

(f) COPD 6. (g) COPD 7. (h) COPD 8. (i) COPD 9. (j) COPD 10.

Figure 13: Distributions of the DirLab-COPDGene errors for the 300 expert-annotated cor-
responding landmarks. Each image refers to a patient, with a title that refers to the case ID
in the original DirLab dataset. We use color to display the registration error with our best per-
forming model (D-RobOT with LDDMM deformations) on the source landmarks. The COPD 2
patient is a clear outlier in our experiment as in all previous studies on the original volumetric data
(https://www.dir-lab.com/Results.html) – this may be due to annotation errors. On the
other patients, most of the large errors occur in boundary regions where acquisition artifacts induce
inconsistencies between the source and target point clouds: small vessels are harder to catch in the
original 3D volume.
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A.4.3 Experiments on Kitti

We now provide details for our experiments on scene flow estimation, which are illustrated in Fig. 14.
Notably, we discuss the influence of the sampling rate for the source and target point clouds and
provide an extensive ablation study for the modules of the D-RobOT model.

Influence of the sampling rate. We follow the pre-processing strategy of PointPWC-Net [126]:

1. We train on points whose depth with respect to the acquisition device is smaller than 35 m.
2. We sample points from both of the source and target frames at random, in a non-

corresponding manner.

In the main manuscript, we report results when the source and target point clouds are sampled with
either 8,192 or 30k points at a time. We note that in a similar situation, when sampling 32,768 points
from each frame, HPLFlowNet [49] reported an average EPE3D value of 10.87 cm over all 142 pairs
of the Kitti dataset. In comparison, our D-RobOT model reaches a much higher accuracy (EPE3D =
2.23 cm) with only 30,000 points per frame.

Working with the 57 largest scenes from Kitti. We note that the number of points per 3D frame
varies widely in the Kitti dataset. To investigate the potential negative effects from under-sampling,
we evaluate our models separately on pairs where both frames contain more than 30k points: 57 out
of the 142 Kitti scene pairs meet this requirement. When dealing with those 57 “most populated”
frames, sub-sampling the scene to 30k points induces a net loss of geometric information.

We display our results for this subset of Kitti in Tab. 6: unsurprisingly, performance is lower than in
Fig. 4, which reports results on the full Kitti dataset and thus includes the 85 pairs of frames for which
30k points are enough to work at full resolution. Nevertheless, our conclusions remain consistent:
the D-RobOT method outperforms PointPWC-Net [126] for both sampling rates.

Ablation study. Going further, we analyze the contributions of the pre-alignment and post-processing
modules in the D-RobOT model. Our results are summarized in Tab. 6 and can be described as
follows:

• The pre-alignment module improves results for both sampling rates. Since rigid trans-
formations have few degrees of freedom, the estimation of Eq. (5) does not rely on fine
details.

• In sharp contrast, the post-processing module only improves results for high-resolution
points. In practice, our RobOT-based post-processing behaves as a fast local fitting to the
target point cloud. In the upper half of the table, the target point cloud and the set of “ground
truth” final positions for the source points have small overlap due to the small number of
sampling points for these complex scenes: a local “pixel-perfect” fine-tuning is detrimental
to performance. In the lower half of the table, we increase the sampling rate to 30k points
per frame: the target point cloud and the set of ground-truth final positions for the source
points have a much higher overlap. This allows the RobOT post-processing to increase the
accuracy of the full model.

Experiments. We now provide detailed hyperparameters for the D-RobOT architecture in our
Kitti experiments. As detailed in Sec. 3.2, the full model applies successively: a rigid S-RobOT
pre-alignment; a deep non-parametric registration; and a spline S-RobOT post-processing.

1. Rigid registration. For rigid pre-alignment, we use the S-RobOT model of Eq. (5) with raw
(x, y, z) coordinates as input features in R3. The vessel radii are taken into account as point weights
αi and βj . In the RobOT problem of Eq. (2), we set the blur parameter to σ = 1 m and the reach
parameter to τ = +∞ (balanced OT with strong constraints on the marginals).

2. Deep non-parametric registration. We use the prediction architecture and deformation models
of Suppl. A.4.2. Our spline deformation model is based on a multi-Gaussian-kernel with standard
deviations {20, 40, 60} cm as and weights {0.2, 0.3, 0.5}. With the coordinates of points the x and y
in centimeters, this corresponds to the positive definite kernel function:

k(x, y) = 0.2 · exp
[
− ‖x− y‖2R3/(2 · 202)

]
+ 0.3 · exp

[
− ‖x− y‖2R3/(2 · 402)

]
(24)

+ 0.5 · exp
[
− ‖x− y‖2R3/(2 · 602)

]
.
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Figure 14: Additional results for scene flow estimation on Kitti. From left to right, the columns
refer to: the source shape; the registration result for D-RobOT with a spline deformation model (the
source point cloud is displayed in gray in the background, flows are displayed as brown arrows); the
target shape (the source point cloud is displayed in gray in the background); and the D-RobOT result
overlapped with the target. Each row corresponds to a single pair of 3D frames.

Figure 15: RobOT matching vs Nearest Neighbor projection on a synthetic local vessel tree.
From left to right, the columns refer to: the source shape; the registration result for NN projection and
RobOT followed by a local smoother (the source point cloud is displayed in gray in the background,
flows are displayed as gray arrows); the target shape (the source point cloud is displayed in gray in
the background); and the D-RobOT result overlapped with the target.
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3. Postprocessing. To fine-tune our registration, we use the spline S-RobOT deformation of Eq. (7)
with (x, y, z) coordinates as input features in R3. We set the blur parameter to σ = 5 cm and the
reach parameter to τ = 80 cm. For smoothing, we use the vessel-preserving anisotropic kernel
k(x, y) of Sec. A.2 with a kernel scale slocal = 80 cm.

A.5 RobOT matching vs nearest neighbor projection.

As detailed in Sec. 2.2, we use the RobOT matching of Eq. (4) as a plug-in replacement for nearest
neighbor (NN) projection. At an affordable computational cost, our RobOT layer enforces a local
conservation of the point density: this geometric prior is relevant for many registration tasks and
mitigates accumulation artifacts that are commonly found in nearest neighbor projections [35, 40].
In accordance with the theory, we thus observe that RobOT matching outperforms nearest neighbor
projection in a wide range of settings.

Local translations. When the point features pi and qj correspond to the (x, y, z) coordinates in
R3, a key property of the Monge-Brenier map that is defined by Eq. (4) is that it perfectly retrieves
translations and dilations [15, 35, 87]. Scene flow estimation is often close to this best case scenario
for RobOT theory: after we remove points that correspond to the ground (a common pre-processing
for this task), most of the displacements can be explained as local translations and small rotations of
solid objects (e.g. cars or trees) in the frame of reference of the acquisition device.

On the Kitti benchmark of Fig. 4, we observe that a simple RobOT matching already performs
very well for 3D scene flow estimation. Remarkably, and without any training, vanilla RobOT
matching on high-resolution point clouds (30k points per frame) outperforms most pre-existing
deep learning methods on medium-resolution point clouds (8,192 points per frame) in terms of
speed, memory usage and accuracy. This is strong evidence that geometric methods deserve more
attention from the computer vision community.

Complex structures. Going further, the mass distribution constraint of Eq. (2) is useful to register
complex shapes with appendices and branches. This property has been discussed in depth in
previous works: we refer to e.g. [36] for the matching of five-fingered hand surfaces. The (soft)
constraints on the marginals of the transport plan promote a bijective matching of the fingers,
preventing the thumb and the index of the source shape from being both projected on the thumb of
the target.

In Fig. 15, we provide a similar example for the local registration of branching vessels. We create
a synthetic pair of source and target vessels with N = 1, 000 and M = 1, 200 points respectively.
We normalize their (x, y, z) coordinates to be contained in the unit cube [0, 1]3 and assign uniform
weights αi = 1 and βj = 1 to each point – we work in a realistic unbalanced scenario. We compute
the raw NN matching using a simple nearest neighbor projection from the source onto the target in R3.
For the RobOT matching, we also use raw (x, y, z) coordinates and the squared Euclidean metric;
we set the blur parameter to 0.0005 units in R3 and the reach parameter to 1 unit (unbalanced OT).
As detailed in Suppl. A.2, we regularize both of the NN and RobOT matchings using an anisotropic
muti-Gaussian-kernel with standard deviations {0.03, 0.05, 0.07} and weights {0.2, 0.3, 0.5}.
As a post-processing step. As discussed above, RobOT matching is good at handling local transla-
tions, dilations and small free-form deformations. We propose to use it as a fast post-processing step
in our D-RobOT architecture, presented in Sec. 3.2. In order to validate its utility, we perform an
ablation study on the PVT1010/DirLab dataset for lung registration.

We benchmark increasingly suitable fine-tuning layers: no fine-tuning; nearest neighbor projection;
RobOT matching; nearest neighbor projection with vessel-preserving smoothing; RobOT matching
with vessel-preserving smoothing. Our results are detailed in Tab. 4: when used in combination with
a smooth deformation model, these layers result in an increasingly higher accuracy. This confirms
the main findings of our work: including sensible geometric priors in a modular deep learning
architecture is the key to reliable state-of-the-art performance.

A.6 Computational Resources

For the evaluation of time and memory cost in Fig. 4, we compare all models on a Ubuntu server
with a single 24GB NVIDIA Quadro RTX 6000 graphics processing unit (GPU) and a 10-core
Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz. We trained all of our networks on a single 24GB
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NVIDIA RTX 3090 GPU, except for the training of PointPWC-Net with 30k sampled points that was
performed on a 48GB NVIDIA RTX A6000 GPU.

A.7 Potential for negative societal impact

Point cloud registration is a fundamental low-level task in computer vision and computer graphics.
As a consequence, negative societal impact of our work may arise in a wide range of use cases. A
first example is that of point cloud registration for autonomous driving: algorithm failure could lead
to incorrect driving decisions. Similar concerns may arise when using these approaches to register
facial scans for the purpose of person identification. In general, while our manuscript demonstrates
improved performance and robustness over competing approaches, the possibility for registration
failures should always be considered when applying our models in safety critical environments.
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