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Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).
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HeKA : a translational research team for public health

Inserm

Hôpitaux

Inria

Universités
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Mymainmotivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
⟹ pyKeOps library for distance and kernel matrices, 600k+ downloads.

2. Scale up pharmacovigilance to the full French population:
⟹ survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
⟹ GeomLoss, truly scalable optimal transport in Python.
⟹ scikit-shapes, alpha release now available.
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Today’s talk – assuming that you would enjoy some nice simulations

1. A quick heads up on fast geometric methods.

2. Efficient discrete optimal transport solvers.

3. New applications for systems of incompressible particles.
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How to code a N-body simulation?



Scientific computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers
penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses
penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported
by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA
(FAISS, KPConv…): several months of work.

M[ i , j ]

Dense array

(in, jn, Mn)

Sparsematrix 6



The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F( xi , yj )

Symbolic matrix
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.
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A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array

Turn dense arrays into symbolicmatrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
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The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,
on parwith the bruteforce CUDA scheme of the FAISS library…

And can be used with anymetric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variableswith:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
• Operations: +, ×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.
• Automatic differentiation: seamless integration with PyTorch. 9



KeOps lets users work withmillions of points at a time

Benchmark of a Gaussian convolution 𝑎𝑖 ← ∑𝑁
𝑗=1 exp(−‖𝑥𝑖 − 𝑦𝑗‖2

ℝ3) 𝑏𝑗
between clouds of N 3D points on a A100 GPU.

100 1k 10k 100k 1M

100𝜇s

1ms

10ms

100ms

1 s

out of memory!

error!

Number of points N

NumPy (CPU)

PyTorch (GPU)

+ .compile()

KeOps (GPU)

+ batch(100)
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Yet another ML compiler?

Many impressive tools out there (Taichi, Numba, Triton, Halide…):

• Focus on generality (software + hardware).
• Increasingly easy to use via e.g. PyTorch 2.0.

KeOps fills a different niche (a bit like cuFFT, FFTW…):

• Focus on a single major bottleneck: geometric interactions.
• Agnosticwith respect to Euclidean / non-Euclidean formulas.
• Fully compatible with PyTorch, NumPy, R.
• Can actually be used bymathematicians.

KeOps is a bridge between geometers (with a maths background)
and compiler experts (with a CS background).
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Optimal transport?



Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P:

OT(A,B) = min
P∈ℝN×N

1
2N

N

∑
i, j =1

P𝑖,𝑗 ⋅ ‖ x𝑖 − y𝑗‖
2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 1⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 1 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]
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Practical use

Alternatively, we understand OT as:

• Nearest neighbor projection + incompressibility constraint.

• Fundamental example of linear optimization over the transport plan P𝑖,𝑗.

This theory induces twomain quantities:

• The transport plan P𝑖,𝑗 ≃ the optimal mapping 𝑥𝑖 ↦ 𝑦𝜎(𝑖).

• The “Wasserstein” distance √OT(A,B).
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The optimal transport plan
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OT induces a geometry-aware distance between probability distributions [PC18]

Gaussmap 𝒩 ∶ (𝑚, 𝜎) ∈ ℝ × ℝ⩾0 ↦ 𝒩(𝑚, 𝜎) ∈ ℙ(ℝ).

If the space of probability distributions ℙ(ℝ) is endowed with a given metric,
what is the “pull-back” geometry on the space of parameters (𝑚, 𝜎)?

Fisher-Rao (≃ relative entropy) on 𝒩(𝑚, 𝜎)
→ Hyperbolic Poincarémetric on (𝑚, 𝜎).

OT on 𝒩(𝑚, 𝜎)
→ Flat Euclideanmetric on (𝑚, 𝜎).

15



How to solve the OT problem?



Duality: central planning with NM variables ≃ outsourcing with N + M variables

OT(A,B) = min
𝜋

⟨ 𝜋 , C ⟩, with C(𝑥𝑖, 𝑦𝑗) = 1
𝑝‖𝑥𝑖 − 𝑦𝑗‖𝑝 ⟶ Assignment

s.t. 𝜋 ⩾ 0, 𝜋 1 = A, 𝜋T1 = B

∑𝑖,𝑗 𝜋𝑖,𝑗 C(𝑥𝑖, 𝑦𝑗)

∑𝑖 𝛼𝑖𝑓𝑖 + ∑𝑗 𝛽𝑗𝑔𝑗

=

max
𝑓 , 𝑔

⟨ A , 𝑓 ⟩ + ⟨B , 𝑔 ⟩ ⟶ FedEx

s.t. 𝑓(𝑥𝑖) + 𝑔(𝑦𝑗) ⩽ C(𝑥𝑖, 𝑦𝑗),
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Being too greedy... doesn’t work!
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The auction algorithm: take it easy with a slackness 𝜀 > 0
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The Sinkhorn algorithm: use a softmin, get a well-defined optimum
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The symmetric Sinkhorn algorithm: stay close to the diagonal if A ≃ B
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Remark 1: a streamlined algorithm

One key operation – the soft,weighted distance transform:

∀𝑖 ∈ [1,N], 𝑓(𝑥𝑖) ← min
𝑦∼𝛽

[C(𝑥𝑖, 𝑦) − 𝑔(𝑦)] = −𝜀 log
M

∑
𝑗=1

𝛽𝑗 exp 1
𝜀 [𝑔𝑗 − C(𝑥𝑖, 𝑦𝑗)] .

Similar to the chamfer distance transform, convolution with a Gaussian kernel…
Fast implementations with pyKeOps:

• If C(𝑥𝑖, 𝑦𝑗) is a closed formula: bruteforce scales to N,M ≃ 100k in 10ms on a GPU.

• If A and B have a low-dimensional support:
use a clustering and truncation strategy to get a x10 speed-up.

• If A and B are supported on a 2D or 3D grid and C(𝑥𝑖, 𝑦𝑗) = 1
2‖𝑥𝑖 − 𝑦𝑗‖2:

use a separable distance transform to get a second x10 speed-up.
(N.B.: FFTs run into numerical accuracy issues.) 21



Remark 2: annealing works!

The Auction/Sinkhorn algorithms:

• Improve the dual cost by at least 𝜀 at each (early) step.
• Reach an 𝜀-optimal solution with (maxC) / 𝜀 steps.

Simple heuristic: run the optimization with decreasing values of 𝜀.

𝜀-scaling
= simulated annealing
= multiscale strategy
= divide and conquer
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Remark 3: the curse of dimensionality

assignments π

cost wrt. C(x,y)

π

OT(A,B)

+ε

In low dimension:
• ‖𝑥 − 𝑦‖ takes large and small values.
• The OT objective is peakywrt. 𝜋.
• 𝜀-optimal solutions are useful.
• OT(discrete samples) ≃
OT(underlying distributions)

assignments π

cost wrt. C(x,y)

π

OT(A,B)

+ε

In high dimension:
• ‖𝑥 − 𝑦‖ gets closer to a constant.
• The OT objective is flatwrt. 𝜋.
• 𝜀-optimal solutions are random.
• OT(discrete samples) ≠
OT(underlying distributions)
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To recap 80+ years of work…

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.
• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
• [Cut13]: Start of the GPU era.
• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ GeneralizedQuickSort algorithm.
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

OT plan in 2D.
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 0, blur 𝜎 =
√

𝜀 = 20
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 5, blur 𝜎 =
√

𝜀 = 2−5
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 6, blur 𝜎 =
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 7, blur 𝜎 =
√

𝜀 = .01
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 7, blur 𝜎 = .01
27



Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on amodern gaming GPU:

pip install
geomloss

+
modern GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms

28



A typical example in anatomy: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm). 29



Three-steps registration
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Wasserstein barycenters [AC11]

Barycenter A∗ = arg min
A

4
∑
𝑖=1

𝜆𝑖 Loss( A , B𝑖 ) .

Euclidean barycenters.
Loss(A,B) = ‖A − B‖2

𝐿2

Wasserstein barycenters.
Loss(A,B) = OT(A,B) 31



Wasserstein barycenters

From a computational perspective:

• The problem is convex (easy) wrt. the weights.
• The support of the barycenter lies in the convex hull of the input distributions.

The curse of dimensionality hits hard:

• In high dimension, identifying the support can become NP-hard.
• In dimensions 2 and 3, we can just use a grid and recover super fast algorithms.
Computing OT distances and barycenters between density maps is a solved
problem.

⟹ We can now easily domanifold learning (= non-linear Model Order Reduction)
in Wasserstein spaces of 2D and 3D distributions.

32



An example: Anna Song’s exploration of 3D shape textures [Son22]

33



Incompressible particles



Two very talented postdocs

Maciej Buze Antoine Diez
Heriot-Watt University Kyoto University
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Original motivation: the N-body problem [Pri11]
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Coding a simple fluid simulation is now amatter of hours [Lag23]
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Thematerial point method: Disney’s Frozen [SSC+13]
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How canwe enforce a volume preservation constraint? [QLDGJ22]
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Use power diagrams i.e. semi-discrete optimal transport

yM

c2(y) 

 =‖y-x2‖
2

v2=3 at x2

v3=7 at x3
v4=4 at x4

c3(y) 

=‖y-x3‖
2

c3(y) 

 =‖y-x4‖

adjusted
  costs

y1 y2
...

c1(y) 

 =‖y-x1‖
2

v1=5 at x1

c0(y) 

= 0
f1 f2 f3 f4

• The 𝑓𝑖’s maximize the dual objective ∑𝑁
𝑖=1 𝑣𝑖𝑓𝑖 + ∫

𝑦∈Ω
min𝑁

𝑖=0[ 𝑐𝑖(𝑦) − 𝑓𝑖 ] d𝑦.
• Optimality conditions ⟺ Vol(Cell𝑖) = 𝑣𝑖.
• To compute the cells, the objective and its gradient:

• If 𝑐𝑖(𝑦) = ‖𝑦 − 𝑥𝑖‖2 for all cells, use a clever grid-free algorithm.
• Otherwise, just use KeOps.
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Power plastics [QLY+23]

40



Power plastics [QLY+23] – without the eye candy
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Main numerical ingredients

These simulations alternate between:

1. Moving the particles according to your favorite N-body model.

2. Computing Laguerre cellswith the correct volumes:

• (Multiscale) Sinkhorn for tolerance > 5%.
• (Quasi-)Newton for tolerance < 1%.

3. Correcting the particle positions to enforce the volume-preservation constraint:

• Jump to the centroid of the cell.
• Or add a spring for smoother trajectories.

See e.g. Thomas Gallouët for a rigorous analysis with Mérigot, Lévy, etc.
But today: new applications with custom cost functions (thanks KeOps).

42



Anisotropic power diagrams let us model polycrystallinemetals [BFR+24]

Ellipsoids. Pixel cells. 5,000 crystals in 3D.

43



Fit to real EBSD scan of low-carbon steel [BFR+24]

Data from Tata steel. Our APDmodel. New synthetic image.

We can generate new, realistic 3D images with prescribed properties in seconds.
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Change the cost function to simulate hard (blue) and soft (orange) cells [DF24]

The raw 100x100x100 pixel grid… with some Hollywoodmakeup.
45



Run-and-tumblemotion [DF24]

2D disk. 3D cube.
46



Fire alarm! [DF24]

Hard particles burn. Soft particles escape.
47



Self-organizing swarms of blind, incompressible swimmers [DF24]
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Self-organizing swarms of blind, incompressible swimmers [DF24]

𝑡 = 0 𝑡 = 4 𝑡 = 30
Order emerges out of blind collisions and re-alignments.
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Surface tension [DF24]
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Surface tension [DF24] – playing with the energy parameters
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Conclusion



Genuine teamwork

Benjamin Charlier Joan Glaunès Thibault Séjourné F.-X. Vialard Gabriel Peyré

Alain Trouvé Marc Niethammer Shen Zhengyang Olga Mula Hieu Do
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Key points

• Optimal Transport = volume preservation = generalized sorting :
⟶ Super-fast solvers on simple domains, especially 2D/3D spaces.
⟶ Fundamental tool at the intersection of geometry and statistics.

• “Video-game physics” is great for modelling:
⟶ Expressive, real-time simulations that you can implement

without being a Finite Elements guru: XPBD, DiffPD, Taichi…

• GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.

2026 target for scientific Python: interactive, web-based simulations à la ShaderToy.
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Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf 54

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf
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