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e \We expand upon our previous work on characterizing protein fingerprints:
functional interaction patterns on protein surfaces.

e Our previous method MaSIF relied on mesh convolutions. It was limited by
high computational requirements and costly precomputations.

e \We present dMaSIF: a quasi-geodesic point neural network which is
precomputation-free and orders of magnitude faster than MaSIF.

e dMaSIF is fully differentiable back to the atomic structure. This opens the
door to end-to-end approaches in protein modeling and design.

Introduction

A protein’s amino acid sequence
determines its three-dimensional
structure (black). This
three-dimensional structure
determines which other molecules
(green) the protein can bind to.

A continuous We use protein
protein surface atoms to generate
can be defined as a point cloud
those parts of the q ~ ?‘ 4 representation of
protein that are the protein
accessible by 3 surface.

other molecules.
We predict
Interaction
patterns (red)
based on the
surface features.

We use known
Interactions to
label the surface
points (red).
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Method overview
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a. points, normals

--——» pre-processing

We generate the protein

surface on the fly by: @

a) Defining a smooth
distance function based
1. on the atom coordinates:
b) Randomly sampling
points around the atoms;
c) Using the gradient of the
distance function to walk
the sampled points towards
a level set.

(d) Cleaning.

We approximate geodesic distances on
the fly using the point normals:

d. = Ix. - Xj||2 - (2 - (ni,nj>)

1

We leverage the KeOps library to
iImplement quasi-geodesic convolution
layers. They scale up to high-resolution
point clouds and are easy to interface
with PyTorch_Geometric.

b. features

(a) Distance.
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c. patches d. output
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c. coordinates d. output

—> on the fly

(e) Sub-sampling. (f) Normals.
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Our input features:
data-driven chemical
features + Gaussian,
mean curvatures at

different scales.

These are computed
directly from the atom
types and positions.

In dMaSIF-site the v
task is to segment
the surface into
interacting /
2.  non-interacting sites.
dMaSIF-search is
trained to find point
correspondences
between two
iInteracting proteins.

dMaSIF runs orders 1'0
of magnitude faster 0.8
than MaSIF and has 2
much lower memory £ 00
requirements. '%;04_
Moreover, dMaSIF -
slightly outperforms 02 I T ourste
MaSIF on the two —— MaSIF-site
tasks we tested on. 0.0 ! | | (oo Meoheearh
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https://www.nature.com/articles/s41592-019-0666-6
https://www.kernel-operations.io/keops/index.html
https://pytorch-geometric.readthedocs.io/en/latest/

