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ABSTRACT

Artificial intelligence (AI), a highly interdisciplinary
science, is an increasing presence in pharmaco
vigilance (PV). A better understanding of the scope of
artificial intelligence in pharmacovigilance (AIPV)
may be advantageous to more sharply defining, for
example, which terms, methods, tasks, and data sets
are suitably subsumed under the application of AIPV.
Accordingly, this article explores relevant points to
consider regarding defining the scope of AIPV and
offers a potential working definition of the scope of
AIPV. (Clin Ther. 2021;43:372e379) © 2020 Elsev-
ier Inc.
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INTRODUCTION
Artificial intelligence (AI) is being increasingly used in
pharmacovigilance (PV). On the basis of a
MEDLINE search for the terms artificial intelligence
and pharmacovigilance, the field of artificial
intelligence in pharmacovigilance (AIPV) is rapidly
growing (Figure 1). Although the recent increase
shown in this figure is only a crude signal of the
magnitude of increasing interest, it aligns with
observations of scientific meeting agendas and
initiatives in this area. For example, the newly
formed Drug Safety Research Unit International
Working Group on Signal Detection and Evaluation
has a subgroup devoted to AI.1

A dictionary definition of AI is different from a
working definition of AI. An insufficient
understanding of the scope of AIPV, for example,
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which terms, methods, tasks, and data sets are
ordinarily considered to be included in the
application of AIPV, will likely hamper efficient and
consistent execution of various activities for which
decisions about what is and is not AIPV must be
made. Such activities potentially adversely affected
would include, for example, conducting systematic
reviews or planning scientific meetings or working
groups. AIPV scoping is even more essential given the
nested and overlapping fields of AI, machine learning
(ML), deep learning (DL), data mining, and cognitive
computing. In addition, AIPV stakeholders are a
diverse range of scientific and policymaking
disciplines with variable baseline knowledge.

Another key use of a scoping exercise is to create a
well-defined mapping of what is and is not known
about a topic.2 Systematic literature reviews can often
return many false-positive results, even with sensitive
and specific search strategies,3 which then necessitates
arduous and potentially inconsistent relevance
adjudication via title, abstract, and possibly full-text
review. A case in point is a recent systematic review
of one circumscribed subset of AIPV, natural
language processing for electronic health
recordsebased PV, which returned 1422 citations of
which all but 48 were excluded.4 An upfront sharper
topic scope may ease the burden following such
systematic literature reviews. A well-defined scope of
AIPV can also provide orientation for new entrants
into the field. In this article, we explore relevant
points to consider (PTCs) regarding defining the
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Figure 1. Number of unique citations returned by a simple keyword search for artificial intelligence and phar-
macovigilance in MEDLINE on January 10, 2021, without application of automatic term explosion or
mapping or an adjacency operator, from 2004 through 2020.
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scope of AIPV and offer a potential working definition
of the scope of AIPV to, in conjunction with the PTCs,
facilitate further deliberation on this topic.
PTCs: AI TERMS
Artificial is not particularly difficult to define, but
intelligence is harder to define. Legg and Hutter5

reviewed 70 definitions, including 18 from AI
researchers. The psychologist Gardner6 proposed that
individuals possess �8 relatively autonomous
intelligences, including visual-spatial, verbal-linguistic,
logical-mathematical, bodily-kinesthetic, and
interpersonal intelligence. These intelligences may
correspond to narrow AI tasks, such as machine
vision, automated driving, image captioning, self-
driving cars, reading radiographs or interpreting
biopsy results, and intelligent agents. These are tasks
that people perform. Mapping intelligence definitions
to the AI tasks that people perform corresponds to
much of AI, but it is not a perfect correspondence
because many AI applications involve extraction of
information from data sets that is not and cannot be
performed by humans without machines, even given
unlimited time. AIPV is currently narrow AI, applied
to tasks such as natural language processing of
February 2021
information from medical text (eg, adverse event
extraction).

Definitions of the term AI abound. Wang7 presents
one thorough analysis of defining AI and notes that a
dictionary definition of AI is different from a
working definition of AI. Three elements of Wang's
analysis are particularly pertinent to embarking on
developing a working definition of AIPV. First,
defining AI is important to prevent conflicting
implicit assumptions and misunderstandings that
could degrade research, discussion, and debates.
Second, there are 5 typical categories of AI
definitions: structure, behavior, capability, function,
and principle. Definition by capability is based on
specific application domains. Third, a working
definition guides a research agenda or objective and
facilitates its efficient and consistent execution. It is
based on 4 guiding principles: similarity to common
use, sharpness, leading to fruitful research, and
simple as possible.
PTCs: METHODS
AI is a broad area of computer science, inclusive of
ML, which in turn includes DL and other forms of
ML, sometimes known as traditional ML, as well as
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non-ML forms of AI, sometimes referred to as “good
old-fashioned AI (GOFAI)”. ML can be discussed
from the perspective of types of learning (eg,
supervised, unsupervised, and reinforcement
learning), general ML tasks, and specific methods.

A historic, widely cited, and authoritative
intentional definition of ML is “a computer
program is said to learn from experience E with
respect to some task T and some performance
measure P, if its performance T, as measured by P,
improves with experience E.”8 This definition leaves
residual fuzziness in the boundary between ML,
especially some traditional ML, and basic statistical
methods. After all, ordinary least-squares
regression, which is frequently listed in the gray
literature as a form of traditional ML, might not
come to mind when we think of cutting-edge AI.
Table I. Typical characteristics of ML and non-ML appro

Machine Learning N

Relative emphasis on classification, potential for
utility in prediction, with data split for training and
testing; model interpretability, albeit potentially
desirable, is less emphasized

R

ML architecture and learning defined by external
hyperparameters initialized before training and
optimization, not estimated from the data (eg,
number of hidden units, layers and epochs,
learning rate, dropout rate in neural networks)

M

Accommodates big data with hundreds of millions
of parameters, high or poorly defined
dimensionality, many nonlinearities and
ambiguous data structure

U

Representational learning and automated feature
extraction

E

More ways to improve performance (eg,
hyperparameter tuning, increased data, run time,
or ensemble learning)

P

More nonparametric, fewer assumptions about data
and model theory

M

Abbreviation: ML, machine learning.
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However, improved accuracy with increased
experience, the essence of McCarthy's original
definition of ML, is compatible with the increased
power and precision of ordinary least-squares
regression with increasing sample size. This
inevitably leads to the still much debated question
of what is the difference, if any, between ML and
other statistical methods or modeling?

Table I summarizes several typical characteristics of
ML and non-ML data analyses. Table I is not intended
to be fully comprehensive, and although the
characteristics listed in Table I facilitate some
understanding of methods, current applications, and
practices, they do not establish a bright and
immutable line between ML and non-ML. Not every
element in Table I is decisive in all cases; therefore,
scoping decisions require a holistic consideration of
aches.

on-ML (eg, Statistical Analyses, Computations, and
Models)

elative emphasis on inference, estimation, P values, CIs,
goodness of fit, and relationships between variables
and their individual contributions and model
interpretability; typically analyzes the entire data set
at once; observations from changes in model fits can
provide insights about behavior of variables as
individual predictors
odel hyperparameters of prior parametric distribution
and direct model parameters often estimated from
the data when model is run, although can be
assigned based on prior beliefs in Bayesian models

sually accommodate small to moderate sized,
relatively well-behaved data sets with limited number
of parameters

xtensive manual feature engineering

erformance improvement with increased sample size

ore parametric and requires assumptions to be made
about structure of data and model theory
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all the elements listed in Table I as well as the other
PTCs.

Representational learning (Table I) is a key concept
for ML, automatically extracting predictive features
from data. This procedure reduces the need for the
extensive manual feature engineering more often, but
not exclusively, used in non-ML methods. Some
techniques, such as regression, can be enhanced for
representational learning (eg, by implementation with
regularization).

Many basic methods are clearly ML (and thus AI),
fitting multiple machine learning characteristics listed
in Table I. These methods include neural networks,
individual decision trees, random forests, support
vector machines, and naive Bayes theorems.
However, some methods are both ML and non-ML.
For example, logistic regression is often used for
classification and prediction but also routinely
provides parameter estimates, P values, CIs, goodness
of fit, and model interpretability.

Using the criteria listed in Table I, the commonly
performed disproportionality analysis of spontaneous
reporting system data, namely data mining,9 is not in
scope for AIPV. For example, calculation of a
proportional reporting ratio is executed with code
that fully defines a single, static arithmetical
calculation, although many calculations are
performed simultaneously and in a low-dimensional
space.

Bayesian logic is frequently applied in ML but does
Bayesian logic therefore elevate Bayesian
disproportionality analysis to a form of AIPV?
Contemporary forms of Bayesian disproportionality
analysis may be viewed as learning from the data,
updating hyperparameters with increasing experience,
to converge toward a final model, thus reminiscent of
intelligence. However, it is still a prespecified
(parametrically via conjugate distributions or using
simple arithmetical adjustments roughly akin to plus
four CIs) density estimation of observed-to-expected
reporting frequencies. It focuses on dampening the
sample variance in low-dimensional projection of
large sparse data (ie, 2 × 2 contingency tables). It is
therefore arguably not in scope when also
considering other parts of Table I. Future enhanced
versions, accommodating more variable dimensions
or ensembling with other methods or information,
could well more readily fall into scope, so an open
mind is desirable.
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Some ML existed long before other types of ML and
big data did (eg, principle components analysis).
Principle components analysis is a dimensionality
reduction technique developed by Karl Pearson in
1901. Its inclusion as ML is justified because (1) it is
adaptive, performing automated feature extraction
(ie, a new basis defined by weighted combinations of
the input variables defining a lower dimensional
space); (2) more contemporary formulations, such as
robust and randomized principle components
analysis, are more specialized for big and/or sparse
data sets that are well described by nonlinear models;
(3) it is frequently used for ML tasks and
optimizations; and (4) minimum assumptions are
required for exploratory purposes.10 Note that
dimensionality reduction includes more advanced
methods specialized for highly nonlinear big data,
such as various forms of embedding.

How about in real-world practice? Python (Python
Software Foundation, Wilmington, Delaware) is the
most commonly used programming language for ML.
On the GitHub repository, it is the number 1
language for ML. In a Kaggle survey, 87% of data
scientists reported using Python, more than any other
language. The Python ML libraries, frameworks, and
associated documentation may therefore provide a
reality check on our method PTCs.

One basic Python ML library is Scikit-learn. Scikit-
learn, version 0.22.2 documentation includes a
graphical guidance flowchart that provides an aerial
view of basic ML options for numerical data in
Python (Figure 2).11,12 Note the 4 basic ML tasks are
classification, regression, clustering, and
dimensionality reduction, but classic statistical
methods such as regression, are included when
implemented with regularization or optimization,
consistent with our PTCs.

Non-ML AI (including rules engines, expert
systems, knowledge graphs, or symbolic AI) explicitly
code domain knowledge and symbolic
representations of human reasoning. These analyses
originally used static rules without self-learning or
self-correction and therefore can be considered as
out-of-scope for AIPV. Examples of such non-ML
approaches that are therefore out of scope for AIPV
might be rules-based duplicate report detection and
automation of established causality assessment
algorithms, without corresponding automated case
report information extraction and entry.
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Figure 2. Scikit-learn's guidance flowchart for machine learning.11,12
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However, AIPV, like AI in general, continues to
evolve, unfortunately sometimes along hype cycles.13

Non-ML symbolic AI is seeing something of a 21st-
century resurgence and should not be dismissed out
of hand. Two examples are illustrative. First,
description logic is a web-based knowledge
representation language that allows the construction
of machine-readable and analyzable data. This
language facilitates enhanced adverse event case
definitions and queries, integration of data sets, and
inferencing. These factors are obviously important in
multiple areas of PV.14 Second, hybrid approaches,
such as neurosymbolic AI, combine DL with
symbolic AI to complement each other. These
approaches are already being applied in areas of
relevance to PV.15

In addition, some other approaches customized to
enable the analysis methods to be deployed in PV are
of obvious interest and relevance and therefore in
scope. These approaches include ancillary
computational, data management, and workflow
strategies and technologies, such as platforms,
376
frameworks, and pipelines, within the knowledge
discovery in data bases framework.16,17

Generally, computer algorithms and ancillary
technologies that should be regarded as in scope for
AIPV are those that make it more feasible to define,
represent, combine, learn, reason on, and/or extract
information from numerical and nonnumerical data
sets that otherwise pose difficulties for human
processing and standard statistical models. Difficulties
posed by data sets may be attributable to size,
dimensionality, heterogeneity, nonlinearity, and/or
otherwise ambiguous, incomplete, and/or erroneous
structure.

PTCs: TASKS
A widely cited definition of PV is “the science and
activities relating to the detection, assessment,
understanding and prevention of adverse effects or
any other drug-related problem.”18 We often envision
PV as dedicated professionals toiling over
increasingly large individual case safety report (ICSR)
data sets, periodic summary reports, signal detection
Volume 43 Number 2
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and evaluation, risk management, and product
labeling. These tasks are all domains of good PV
practice for organizations with statutory or legal
requirements to monitor drug safety. The high-
throughput nature of some of these tasks are enticing
targets for AI. Mokute et al19 derived a set of 51
decision points corresponding to 25 essential
cognitive services in the domain of ICSR processing.
A broader array of actual and potential applications
of AIPV exist,20 including aggregate analysis, periodic
reporting, signal detection, benefit/risk assessment,
and risk management.21,22 Signal detection and
evaluation, being a dominant PV activity, makes AI-
supported evidence synthesis an appealing goal.23

PV, as defined above, is also practiced in daily life by
health care practitioners, scientists performing
research, and patients reporting adverse event data,
the last potentially through wearable health devices.
AI has realized potential applications here as well,
such as using neural networks to analyze multifocal
electroretinograms for early detection of
hydroxychloroquine toxicity.24 The diagnosis of
drug-induced illness from skin and fundus
photographs, biopsies, and imaging studies are
additional examples. An increasingly common use of
AIPV is automating the processing tasks applicable to
ICSRs, in which natural language processing and ML
are already being used to extract ICSR information.

PTCs: DATA SETS AND INFORMATION
SOURCES
Contemporary PV is a holistic process, especially signal
evaluation with converging lines of evidence from
multiple data streams, for which both clinical and
preclinical data are sought. Numerous data from the
molecular level to the human level are potentially in
scope, with well-established sources of data, such as
preclinical toxicology data, spontaneous reports,
electronic claims and medical records, registries, and
clinical trials. Other information sources include user-
generated content (eg, social media, internet search
logs, wearable health devices, and adverse event
reporting apps), chemoinformatics, and systems
biology and Omics databases. ML can discover
features and relationships within these large
biological networks.25e28 Many of these modern data
sets have one or more characteristics and challenges
of big data, such as the increasing number of V's
(volume, velocity, variety, value, validity, variability,
February 2021
veracity, viability, viscosity, and volatility).29 These
big data characteristics, also alluded to in the PTCs
Methods section, present challenges for capture,
integration, storage, and knowledge extraction.

Collaborative initiatives frequently overlap
disciplines of systems and network biology, chemical
biology, computational toxicology, and
bioinformatics. These initiatives use numerous
publicly available big data repositories that contain
millions of compounds and corresponding data
points on full molecular structures, chemical
descriptors, toxicity, and multiple Omics data. These
repositories are potential treasure troves from which
AI can identify complex pathways that lead to
patient adverse outcomes, such as potentially
identifying toxicity during drug development. AI
might also support postapproval signal evaluation by
identifying signature patterns of network connections
and activations, bolstering the Bradford Hill criteria
of biological plausibility in signal evaluation, which
was implemented to some degree as signal
substantiation in the European Union Adverse Drug
Reaction initiative.27 Complex analyses might even
tease apart drug-specific signals within a class.28 Note
that some of these data sets include drugs as well as
agricultural, environmental, and occupational toxins,
requiring careful review to avoid missing relevant
data sets. Although smaller, traditional, preclinical
animal toxicology data sets are not conducive to AI,
it is reasonable not to limit searches to human studies
to prevent missing articles about AIPV for
transspecies toxicity prediction.30

AIPV SCOPE DEFINITION
The above PTCs provide an orientation to the AI and
PV field and support defining the scope of AIPV.
Inspired by these definitional PTCs and considering
the criteria of Wang,7 we consider that a definition
for the scope of AIPV would likely be positioned
around the following elements: development, study,
and use of computerized algorithms and ancillary
technologies; supporting and/or performing
operational and scientific PV tasks; improving PV
knowledge discovery, process accuracy, and/or
efficiency; representing, managing, integrating,
reasoning on, and/or learning from data sets; and
application to data sets that pose difficulties for
human processing and standard statistical models
because of their size, dimensionality, heterogeneity,
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nonlinearity, and/or otherwise ambiguous, incomplete
and/or erroneous structure.

With these elements in mind, but taking into
account that a working definition should also always
be as simple as possible,7 we offer a potential
working definition for the scope of AIPV as follows:
AIPV is the development and use of computerized
algorithms and supporting technologies that perform
operational and scientific tasks to improve PV
knowledge and process performance by transacting
on or learning from data sets that pose difficulties for
human processing and standard statistical analysis.
This potential working definition and the PTCs are
complementary and must be viewed together. For
example, the working definition contains the term PV
without elaboration, whereas the operations and
information PTCs elaborate on specific PV activities
and data sets that might otherwise be overlooked or
inappropriately excluded. The PTCs and a working
definition should, together, better equip interested
parties to understand, discuss, and make scoping
decisions regarding AIPV. As with any PTCs and AI
scope definitions, they should be considered guidance
rather than an immutable prescription regarding
AIPV; the potential working definition for the scope
of AIPV is offered, in conjunction with the PTCs, to
facilitate further deliberation on this topic.
CONCLUSION
This Commentary raises and explores relevant PTCs
regarding the scope of AIPV. On the basis of these
definitional PTCs, we also offer a potential working
definition of the scope of AIPV to, in conjunction with
the PTCs, facilitate further deliberation on this topic.
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