
Tools to write and publish your code

Jean Feydy
HeKA team, Inria Paris

Inserm, Université Paris-Cité

5th of June, 2023
HeKA team seminar
PariSanté Campus

1

Today’s talk

How to:

• Collaborate with git.
• Create a personalwebpage.
• Make your code look clean.
• Test your code automatically.

I will focus on toolswhich are:

• Easy to use, free of charge and with minimal overhead.
• Accessible to all of us – i.e. no Inria- or Inserm-specific service.

These slides are available onmywebpage (Research tab, Talks section).

2

Collaborate with git

Is your current workflow good enough?

Working in a local folder or in a Dropbox prevents you from:

• Keeping track of the history of your project.
• Rolling backmodifications.
• Working in parallelwith your collaborators.
• Welcoming direct feedback from external users.

Git is the standard tool to solve these issues:

• Free, open source software.
• Ubiquitous both in academia and the industry.
• De-centralized, offline copies of the project history stay on your computer.
• Synchronization and authentication via a web platform: GitHub, GitLab…

3

GitHub is themain platformworldwide, maintained by Microsoft

4

Create a new shared folder, or repository

5

Specify themain properties of your project

6

A reference copy of the repository is now in the cloud

7

Create a local copy (clone) using e.g. VSCode

8

Create a local copy (clone) using e.g. VSCode

9

Create a local copy (clone) using e.g. VSCode

10

Create a local copy (clone) using e.g. VSCode

11

Create a local copy (clone) using e.g. VSCode

12

A typical Git workflow

13

Interact with Git using GitKraken or a VSCode plugin

14

My current Git repositories

15

The Git Lens view

16

The Git Graph view – basically the same thing!

17

Step 1: edit some file

18

Step 2: switch to the Git panel

19

Step 3: check yourmodifications

20

Step 4: look at the graph history

21

Step 5: give a name to yourmodification and commit

22

Step 7: synchronize your local version with the GitHub cloud

23

Step 8: done!

24

Step 9: check online

25

Step 9: check online

26

Git allows you to collaborate asynchronously

27

Development branches have names

28

Right click on a commit to create a new branch

29

Right click on a branch label to “check it out” or merge it

30

Click on a commit to inspect changes

31

Diffs and roll-backs are very useful to debug!

32

Create a personal webpage

Why should you care?

A personal webpage is:

• The standard “CV format” in mathematics and computer science.
• Mandatory in academia – ResearchGate or LinkedIn are not enough.
• Helpful to land a data science job.

Create a webpage as soon as possible:

• Present your projects without being constrained by a journal template.
• Help people find your slides, code, supplementary materials…
• Get referenced by Google before you’re actively looking for a job.

33

Step 1: create a GitHub organization with the name of your future website

34

Step 1: create a GitHub organization that bears the name of your website

35

Step 1: create a GitHub organization that bears the name of your website

36

Step 1: create a GitHub organization that bears the name of your website

37

Step 2: create a repository called yoursite.github.io

38

Step 2: create a repository called yoursite.github.io

39

Step 3: create someminimal files

40

Step 4: choose your Jekyll theme

41

Step 5: create a nice banner using e.g. the Midjourney AI

42

Step 6: create your front page

43

Step 7: commit, synchronize… and it’s live!

44

A slightly more complete example

45

A slightly more complete example

46

Going further with Quarto – include Python and R notebooks, etc.

47

Make your code look clean

Standard formatters now beautify your code automagically

These tools:

• Choose spacings, line breaks and parentheses for you.
• Do not impact themeaning of your code.
• Smooth out discrepancies between different collaborators.

Some good options:

• black for Python (pip install "black[jupyter]")
• styler for R (install.packages("styler"))

48

Write some ugly code

def f(a, **kwargs):
b= a +1
c = b**2+a * 3
return c + 1

r = f(1, b = [x**2 for x in range(10)], d= [y**3 for y in range(5)],
e = [z**4 for z in range(3)])

49

Run “black code.py” or “black .” in your code folder

def f(a, **kwargs):
b = a + 1
c = b**2 + a * 3
return c + 1

r = f(
1,
b=[x**2 for x in range(10)],
d=[y**3 for y in range(5)],
e=[z**4 for z in range(3)],

)

50

Test your code automatically

Automatic testing is a key part of software engineering

Modern tools:

• Let you write test functions withminimal overhead.
• Run a full test suite every time you push a commit to GitHub.
• Send you an e-mail if your modifications have introduced a bug.

This is key:

• To quickly identify mistakes.
• To let you trust your collaborators on large projects.
• To let users trust your team.
• To let the future you trust the current you…
• To raise an alarm if a dependency update (PyTorch…) breaks your code.

51

Automatic testing is known as continuous integration

testthat is the standard package for R.

A personal selection for Python:

• pytest to discover test functions in the repository.
• hypothesis to generate challenging test cases.
• beartype to check function inputs.
• jaxtyping to check the shapes of NumPy arrays and Torch tensors.
• codecov to highlight the parts of the code that are yet to be tested.

52

Step 1: create a file named test_*.py and a function test_*(...)

53

Step 2: find bugs

54

Step 3: fix them!

55

Step 4: setup automated tests for every GitHub push

56

Step 5: tests run for free on the GitHub servers

57

Success: your tests passed!

58

Failure: you will get an e-mail!

59

Failure: inspect the test run to identify the bug

60

Codecov: a nice web API to inspect your test coverage

61

Codecov: a nice web API to inspect your test coverage

62

Conclusion

The tools we discussed today let you:

• Collaborate efficientlywith your team.
• Control the flow of information about your work.

I strongly advise you to try them out:

• Smooth learning curve.
• Save tons of time (debugging, lost versions…).
• Be credible in teammeetings, conferences, job interviews.

63

Please feel free to askme questions anytime!

63

References i

64

	Collaborate with git
	Create a personal webpage
	Make your code look clean
	Test your code automatically

