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Today’s talk

How to:

• Collaborate with git.
• Create a personalwebpage.
• Make your code look clean.
• Test your code automatically.

I will focus on toolswhich are:

• Easy to use, free of charge and with minimal overhead.
• Accessible to all of us – i.e. no Inria- or Inserm-specific service.

These slides are available onmywebpage (Research tab, Talks section).
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Collaborate with git



Is your current workflow good enough?

Working in a local folder or in a Dropbox prevents you from:

• Keeping track of the history of your project.
• Rolling backmodifications.
• Working in parallelwith your collaborators.
• Welcoming direct feedback from external users.

Git is the standard tool to solve these issues:

• Free, open source software.
• Ubiquitous both in academia and the industry.
• De-centralized, offline copies of the project history stay on your computer.
• Synchronization and authentication via a web platform: GitHub, GitLab…
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GitHub is themain platformworldwide, maintained by Microsoft
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Create a new shared folder, or repository
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Specify themain properties of your project
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A reference copy of the repository is now in the cloud
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Create a local copy (clone) using e.g. VSCode
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Create a local copy (clone) using e.g. VSCode
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Create a local copy (clone) using e.g. VSCode
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Create a local copy (clone) using e.g. VSCode
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Create a local copy (clone) using e.g. VSCode
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A typical Git workflow
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Interact with Git using GitKraken or a VSCode plugin
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My current Git repositories
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The Git Lens view
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The Git Graph view – basically the same thing!

17



Step 1: edit some file
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Step 2: switch to the Git panel
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Step 3: check yourmodifications
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Step 4: look at the graph history
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Step 5: give a name to yourmodification and commit
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Step 7: synchronize your local version with the GitHub cloud
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Step 8: done!
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Step 9: check online
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Step 9: check online
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Git allows you to collaborate asynchronously
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Development branches have names
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Right click on a commit to create a new branch
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Right click on a branch label to “check it out” or merge it
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Click on a commit to inspect changes
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Diffs and roll-backs are very useful to debug!
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Create a personal webpage



Why should you care?

A personal webpage is:

• The standard “CV format” in mathematics and computer science.
• Mandatory in academia – ResearchGate or LinkedIn are not enough.
• Helpful to land a data science job.

Create a webpage as soon as possible:

• Present your projects without being constrained by a journal template.
• Help people find your slides, code, supplementary materials…
• Get referenced by Google before you’re actively looking for a job.

33



Step 1: create a GitHub organization with the name of your future website
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Step 1: create a GitHub organization that bears the name of your website
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Step 1: create a GitHub organization that bears the name of your website
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Step 1: create a GitHub organization that bears the name of your website
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Step 2: create a repository called yoursite.github.io
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Step 2: create a repository called yoursite.github.io
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Step 3: create someminimal files
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Step 4: choose your Jekyll theme
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Step 5: create a nice banner using e.g. the Midjourney AI
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Step 6: create your front page
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Step 7: commit, synchronize… and it’s live!
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A slightly more complete example
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A slightly more complete example
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Going further with Quarto – include Python and R notebooks, etc.
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Make your code look clean



Standard formatters now beautify your code automagically

These tools:

• Choose spacings, line breaks and parentheses for you.
• Do not impact themeaning of your code.
• Smooth out discrepancies between different collaborators.

Some good options:

• black for Python (pip install "black[jupyter]")
• styler for R (install.packages("styler"))
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Write some ugly code

def f(a, **kwargs):
b= a +1
c = b**2+a * 3
return c + 1

r = f(1, b = [x**2 for x in range(10)], d= [y**3 for y in range(5)],
e = [z**4 for z in range(3)])
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Run “black code.py” or “black .” in your code folder

def f(a, **kwargs):
b = a + 1
c = b**2 + a * 3
return c + 1

r = f(
1,
b=[x**2 for x in range(10)],
d=[y**3 for y in range(5)],
e=[z**4 for z in range(3)],

)
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Test your code automatically



Automatic testing is a key part of software engineering

Modern tools:

• Let you write test functions withminimal overhead.
• Run a full test suite every time you push a commit to GitHub.
• Send you an e-mail if your modifications have introduced a bug.

This is key:

• To quickly identify mistakes.
• To let you trust your collaborators on large projects.
• To let users trust your team.
• To let the future you trust the current you…
• To raise an alarm if a dependency update (PyTorch…) breaks your code.
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Automatic testing is known as continuous integration

testthat is the standard package for R.

A personal selection for Python:

• pytest to discover test functions in the repository.
• hypothesis to generate challenging test cases.
• beartype to check function inputs.
• jaxtyping to check the shapes of NumPy arrays and Torch tensors.
• codecov to highlight the parts of the code that are yet to be tested.
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Step 1: create a file named test_*.py and a function test_*(...)
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Step 2: find bugs
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Step 3: fix them!
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Step 4: setup automated tests for every GitHub push
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Step 5: tests run for free on the GitHub servers
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Success: your tests passed!
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Failure: you will get an e-mail!
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Failure: inspect the test run to identify the bug
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Codecov: a nice web API to inspect your test coverage
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Codecov: a nice web API to inspect your test coverage
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Conclusion

The tools we discussed today let you:

• Collaborate efficientlywith your team.
• Control the flow of information about your work.

I strongly advise you to try them out:

• Smooth learning curve.
• Save tons of time (debugging, lost versions…).
• Be credible in teammeetings, conferences, job interviews.
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Please feel free to askme questions anytime!
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