
Fast libraries for geometric data analysis

Jean Feydy

HeKA team, Inria Paris

Inserm, Université Paris-Cité

9th of May, 2022

joint HeKA-Soda seminar

PariSanté Campus

1

Who am I?

Background inmathematics and data sciences:

2012–2016 ENS Paris, mathematics.

2014–2015 M2 mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imaging with Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learning with Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with healthcare:

2015+ Medical imaging.

2016+ Computational anatomy.

2021+ Public health.

2

A focus on the geometric side of data sciences

Physiological measurements

Drug consumption history

Cognitive scores

MRI/CT images

Domain-specific observations
on a population of N patients

Regression (kernels...)

Visualization (UMAP...)

Classification (hierarchical...)

Clustering (K-Means...)

General machine
learning methods

N-by-N matrix
of similarities

My research is about understanding similarity structures.

What are the implicit priors that they reflect?

How can we manipulate them efficiently?
3

A field that is moving fast

Target. Allow scientists to work with

tailor-mademodels as efficiently as possible.

Challenge. The advent of Graphics Processing Units (GPU):

• Incredible value for money:

1 000€ ≃ 1 000 cores ≃ 1012 operations/s.

• Bottleneck: constraints on register usage.

“User-friendly” Python ecosystem, consolidated around

a small number of key operations.
7,000 cores

in a single GPU.

4

My project: a long-term investiment in the foundations of our field

Solution. Expand the standard toolbox in data sciences

to deal with the challenges of the healthcare industry.

Ease the development of advanced models,

without compromising on numerical performance.

Today’s talk:

1. Efficient manipulation of “symbolic” matrices (distances, kernel, etc.).

2. Optimal transport: generalized sorting methods.

3. The long road to standardization and clinical impact.

5

1. Symbolic matrices

Computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers

penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses

penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported

by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA

(FAISS, KPConv…): several months of work.

M[i , j]

Dense array

(in, jn, Mn)

Sparse matrix 6

The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.

• Automatic differentiation.

• Just-in-time compilation of optimized C++ schemes,

triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):

“100k × 100k” computation → 10ms – 100ms,

“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.

×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F(xi , yj)

Symbolic matrix

Formula + data

• Distances d(xi,yj).

• Kernel k(xi,yj).

• Numerous

transforms.
7

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

Turn dense arrays into symbolicmatrices:

from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:

D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reductionto perform a nearest neighbor query:

indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
8

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,

on par with the bruteforce CUDA scheme of the FAISS library…

And can be used with any metric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variables with:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.

• Operations: +, ×, sqrt, exp, neural networks, etc.

• Advanced schemes: batch processing, block sparsity, etc.

• Automatic differentiation: seamless integration with PyTorch. 9

KeOps lets users work with millions of points at a time

Benchmark of a Gaussian convolution

between clouds of N 3D points on a RTX 2080 Ti GPU.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)

10

Applications

KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!
11

KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
12

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(𝜆 Id + 𝐾𝑥𝑥) 𝑎 = 𝑏 i.e. 𝑎 ← (𝜆 Id + 𝐾𝑥𝑥)−1𝑏

where 𝜆 ⩾ 0 et (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is a positive definite matrix.
13

Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) :

• Can be fed to standard solvers: SciPy, GPyTorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):

7h with 8 GPUs → 15mn with 1 GPU.

• Provide a fast backend for research codes:

see e.g. Kernel methods through the roof: handling billions of points efficiently,

by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

14

Geometric deep learning

Context. Trainable models on non-Euclidean domains

(point clouds, surfaces, graphs, etc.), beyond 2D/3D images.

Challenge. In spite of growing interest in the industry,

these models still lack support on the numerical side.

C++/CUDA is (often) required to reach top performance.

Solution. Using KeOps, with a few lines of Python:

• Local interactions: K-nearest neighbors.

• Global interactions: generalized convolutions.

Modelling freedom

⟹ Domain-specific priors.

Quasi-geodesic

convolution on a

protein surface.

15

2. Fast optimal transport solvers

Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

Context. If A = (x1, … , xN) and B = (y
1
, … , y

N
)

are two clouds of N points in ℝD, we define:

OT(A, B) = min
𝜎∈𝒮N

1

2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.

We turn a distance matrix into a permutation.

We extend this definition to weighted samples,

continuous distributions with outliers, etc.

x1
x2
x3
x4

x5

y
3

y
5

y
2

y
4

y
1

assignment

𝜎 ∶[[1, 5]] →[[1, 5]]
16

Optimal transport has two main uses in data sciences

The optimal matching xi ↦ y𝜎(i) is:

• A nearest neighbor projection subject to

a bijectivity constraint.

• A fundamental operation in 3D shape analysis.

• A staple of operations research.

The total cost OT(A, B) induces:
• A useful distance between probability distributions.

• Particle-based interpolation with

argminA 𝜆1OT(A, B1) + ⋯ + 𝜆KOT(A, BK).

OT geodesic

OT barycenters 17

But how should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.

• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.

• [Cut13]: Start of the GPU era.

• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ Generalized QuickSort algorithm.

18

Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

pip install
geomloss

+

modern GPU

(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms

19

Conclusion

Key points

• Symbolic matrices are to geometricML what

sparsematrices are to graph processing:

⟶ KeOps: x30 speed-up vs. PyTorch, TF et JAX.

⟶ Useful in a wide range of settings.

• Optimal Transport = generalized sorting :

⟶ Simple registration for shapes that are close to each other.

⟶ Super-fast 𝑂(N logN) solvers.

• These tools open new paths for geometers and statisticians:

⟶ GPUs are more versatile than you think.

⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
20

Summary: a long-term investment that is starting to bear fruits

Two major evolutions:

• “Big” geometric problem: N > 10k ⟶ N > 1M.

• Optimal transport: linear problem + generalized quicksort.

2016 2017 2018 2019 2020 2021

Symbolic matrices – KeOps

Optimal transport – GeomLoss

Shape analysis

Deep learning

Registration

Clinical app.

21

Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Freyr Sverrisson Shen Zhengyang

+ Marc Niethammer, Bruno Correia, Michael Bronstein…
22

Going forward: the long road to genuine clinical impact

These tools are diffusing well in our research communities (130k+ downloads).

The target is now to go beyond “expert users”.

First step in March 2022: removed all problematic dependencies from KeOps 2.0.

We are now working on:

• High performance on CPU.

• A 100% transparent and NumPy-compatible API for KeOps+GeomLoss.

• Standard benchmarks for kernel methods and optimal transport.

• Applications to drug consumption data from the SNDS

with Anne-Sophie Jannot, Alexis Van Straaten and Pierre Sabatier.

I hope that we’ll have nice results to show you after the summer :-)

23

Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf 24

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf

References

References i

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Lab. for Information and Decision SystemsWorking Paper, M.I.T., Cambridge, MA, 1979.

Grégoire Clarté, Antoine Diez, and Jean Feydy.

Collective proposal distributions for nonlinear MCMC samplers: Mean-field theory

and fast implementation.

arXiv preprint arXiv:1909.08988, 2019.

25

References ii

Christophe Chnafa, Simon Mendez, and Franck Nicoud.

Image-based large-eddy simulation in a realistic left heart.

Computers & Fluids, 94:173–187, 2014.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on,

volume 2, pages 44–51. IEEE, 2000.

26

References iii

Adam Conner-Simons and Rachel Gordon.

Using ai to predict breast cancer and personalize care.

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507,

2019.

MIT CSAIL.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in Neural Information Processing Systems, pages 2292–2300, 2013.

27

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507

References iv

Pierre Degond, Amic Frouvelle, Sara Merino-Aceituno, and Ariane Trescases.

Alignment of self-propelled rigid bodies: from particle systems to macroscopic

equations.

In International workshop on Stochastic Dynamics out of Equilibrium, pages 28–66. Springer,

2017.

Pierre Degond and Sébastien Motsch.

Continuum limit of self-driven particles with orientation interaction.

Mathematical Models and Methods in Applied Sciences, 18(supp01):1193–1215, 2008.

28

References v

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and

correspondence.

Pattern recognition, 31(8):1019–1031, 1998.

Leonid V Kantorovich.

On the translocation of masses.

In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–201, 1942.

29

References vi

Harold W Kuhn.

The Hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2):83–97, 1955.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical

physics.

Neural networks, 7(3):477–490, 1994.

30

References vii

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693–1715, 2015.

31

References viii

Christian Ledig, Andreas Schuh, Ricardo Guerrero, Rolf A Heckemann, and Daniel

Rueckert.

Structural brain imaging in Alzheimer’s disease and mild cognitive impairment:

biomarker analysis and shared morphometry database.

Scientific reports, 8(1):11258, 2018.

Quentin Mérigot.

A multiscale approach to optimal transport.

In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.

32

References ix

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

bioRxiv, 2020.

33

	1. Symbolic matrices
	Applications
	2. Fast optimal transport solvers
	Conclusion
	References

