
Fast geometric libraries

. for vision and data sciences

Jean Feydy

Imperial College London, INRIA Paris

21st October, 2021

1

Who am I?

Background inmathematics and data sciences:

2012–2016 ENS Paris, mathematics.

2014–2015 M2 mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imaging with Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learning with Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with healthcare:

2015 Image denoising with Siemens Healthcare in Princeton.

2019+ MasterClass AI–Imaging, for radiology interns in the University of Paris.

2020+ Colloquium onMedical imaging in the AI era at the Paris Brain Institute.

2

Our motivation: medical data analysis

Three main characteristics:

• Heterogeneous data: patient history, images, etc.

• Small stratified samples: 10 – 1 000 patients per group.

• Dealing with outliers and the heavy tails of our distributions is a priority.

3

Computational anatomy [CSG19, LSG+18, CMN14]

Detect a pattern. Analyze a variation. Register a model.

Some characteristics, in the wider context of computer vision research:

• Standard acquisitions, without occlusions.

• Precision work (at millimeter scale).

• Need for guarantees of robustness and regularity.
4

A field that is moving fast

Target. Design models that combine

medical expertise with modern datasets.

Challenge. The advent of Graphics Processing Units (GPU):

• Incredible value for money:

1 000€ ≃ 1 000 cores ≃ 1012 operations/s.

• Bottleneck: constraints on register usage.

“User-friendly” Python ecosystem, consolidated around

a small number of key operations.
7,000 cores

in a single GPU.

5

My project: a long-term investiment in the foundations of our field

Solution. Expand the standard toolbox in data sciences

to deal with the challenges of the healthcare industry.

Ease the development of advanced models,

without compromising on numerical performance.

In-depth work, numerical foundations ⟶ high-level applications:

1. Efficient manipulation of “symbolic” matrices (distances, kernel, etc.).

2. Optimal transport: generalized sorting methods.

3. Geometric deep learning and biomedical applications.

Future of these tools and clinical perspectives.

6

1. Symbolic matrices

Computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers

penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses

penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported

by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA

(FAISS, KPConv…): several months of work.

M[i , j]

Dense array

(in, jn, Mn)

Sparse matrix 7

The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.

• Automatic differentiation.

• Just-in-time compilation of optimized C++ schemes,

triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):

“100k × 100k” computation → 10ms – 100ms,

“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.

×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F(xi , yj)

Symbolic matric

Formula + data

• Distances d(xi,yj).

• Kernel k(xi,yj).

• Numerous

transforms.
8

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # (1, 1M, 50) array

Turn dense arrays into symbolicmatrices:

from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:

D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reductionto perform a nearest neighbor query:

indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
9

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,

on par with the bruteforce CUDA scheme of the FAISS library…

And can be used with any metric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variables with:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.

• Operations: +, ×, sqrt, exp, neural networks, etc.

• Advanced schemes: batch processing, block sparsity, etc.

• Automatic differentiation: seamless integration with PyTorch. 10

KeOps lets users work with millions of points at a time

Benchmark of a Gaussian convolution

between clouds of N 3D points on a RTX 2080 Ti GPU.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)

11

Applications

KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!
12

KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
13

Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(𝜆 Id + 𝐾𝑥𝑥) 𝑎 = 𝑏 i.e. 𝑎 ← (𝜆 Id + 𝐾𝑥𝑥)−1𝑏

where 𝜆 ⩾ 0 et (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is a positive definite matrix.
14

Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) :

• Can be fed to standard solvers: SciPy, GPyTorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):

7h avec 8 GPUs → 15mn avec 1 GPU.

• Provide a fast backend for research codes:

see e.g. Kernel methods through the roof: handling billions of points efficiently,

by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).

15

2. Optimal transport

Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

Context. If A = (x1, … , xN) and B = (y
1
, … , y

N
)

are two clouds of N points in ℝD, we define:

OT(A, B) = min
𝜎∈𝒮N

1

2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.

Linear problem on the permutation matrix P:

OT(A, B) = min
P∈ℝN×N

1

2N

N

∑
i, j =1

P𝑖,𝑗 ⋅ ‖ x𝑖 − y𝑗‖
2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 1⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 1 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y
3

y
5

y
2

y
4

y
1

assignment

𝜎 ∶[[1, 5]] →[[1, 5]]
16

Key properties of this distance “up to permutations”

The Wasserstein distance
√
OT(A, B) is:

• Symmetric: OT(A, B) = OT(B, A) .

• Positive: OT(A, B) ⩾ 0 .

• Definite: OT(A, B) = 0 ⟺ A = B .

• Translation-aware: OT(A, Translate ⃗𝑣(A)) = 1
2‖ ⃗𝑣 ‖2 .

• More generally, OT retrieves the unique gradient of a convex function

T = ∇𝜙 that maps A onto B:

In dimension 1, (xi − xj) ⋅ (y𝜎(i) − y𝜎(j)) ⩾ 0

In dimension D, ⟨ xi − xj , T(xi) − T(xj) ⟩ℝD ⩾ 0 .

⟹ Appealing generalization of an increasing mapping. 17

A simple example in 2D

t = .00 18

A simple example in 2D

t = .25 18

A simple example in 2D

t = .50 18

A simple example in 2D

t = 1.00 18

A simple example in 2D

t = 5.00 18

A simple example in 2D

t = 10.00 18

An efficient model... but beware of tears!

Before After 19

An efficient model... but beware of tears!

Before After 19

An efficient model... but beware of tears!

Before After 19

An efficient model... but beware of tears!

Before After 19

Geometric solutions to least square problems [AC11]

Barycenter A∗ = argmin
A

4
∑
𝑖=1

𝜆𝑖 Loss(A , B𝑖) .

Euclidean barycenters.

Loss(A, B) = ‖A − B‖2
𝐿2

Wasserstein barycenters.

Loss(A, B) = OT(A, B) 20

Regularization and entropic bias

Challenge. Linear assignment: hard to solve in the general case.

Structure of the distance matrix ‖ x𝑖 − y𝑗‖
⟹ Speed-up computations.

Fundamental tool: regularized transport

OT𝜀(A, B) ≃ OT(A, B)+ entropic penalty with strength 𝜀 > 0.

Smooth and strictly convex approximation: easier to study,

most popular Sinkhorn (or “SoftAssign”) algorithm.

On the other hand, does not define a distance:

OT𝜀(B, B) > 0. argminA OT𝜀(A, B).
21

Theoretical solution: guarantees of robustness to entropic bias

Solution. Sinkhorn divergences are defined with:

S𝜀(A, B) = OT𝜀(A, B) − 1
2OT𝜀(A, A) − 1

2OT𝜀(B, B)
in order to get a null value when A = B.

Theorem (S𝜀 is well suited for optimization)

For all samples A and B :

S𝜀(A, B) ⩾ 0 with equality iff. A = B ,

A ↦ S𝜀(A, B) is convex, differentiable

and metrizes the convergence in law.

We generalize this result to positive Radonmeasures,

arbitrarymetrics ‖ x𝑖 − y𝑗‖ and to the “unbalanced” setting. argminA S𝜀(A, B).
22

How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.

• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.

• [Cut13]: Start of the GPU era.

• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ Generalized QuickSort algorithm.

23

Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on a modern gaming GPU:

pip install
geomloss

+

modern GPU

(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms

24

3. Geometric deep learning

Design task-specific trainable models

Context. Trainable models on non-Euclidean domains

(point clouds, surfaces, graphs, etc.), beyond 2D/3D images.

Challenge. In spite of growing interest in the industry,

these models still lack support on the numerical side.

C++/CUDA is (often) required to reach top performance.

Solution. Using KeOps, with a few lines of Python:

• Local interactions: K-nearest neighbors.

• Global interactions: generalized convolutions.

Modelling freedom

⟹ Domain-specific priors.

Quasi-geodesic

convolution on a

protein surface.

25

Lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm). 26

Three-steps registration

We combine:

1. Global pre-alignment: OT + affine deformation.

2. Deep prediction “at centimeter scale”: multi-scale neural network + diffeomorphism.

3. Fine-tuning “at millimeter scale”: OT + spline regularization.

This pragmaticmethod:

• Is easy to train on synthetic data.

• Scales up to high-resolution: 100k points in 1s.

• Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport, Shen, Feydy et al.

NeurIPS 2021, on ArXiv next week.
27

Three-steps registration

28

Conclusion

Key points

• Symbolic matrices are to geometricML what

sparsematrices are to graph processing:

⟶ KeOps: x30 speed-up vs. PyTorch, TF et JAX.

⟶ Useful in a wide range of settings.

• Optimal Transport = generalized sorting :

⟶ Geometric gradients.

⟶ Super-fast 𝑂(N logN) solvers.

• These tools open new paths for geometers and statisticians:

⟶ GPUs are more versatile than you think.

⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
29

Summary: a long-term investment that is starting to bear fruits

Two major evolutions:

• “Big” geometric problem: N > 10k ⟶ N > 1M.

• Optimal transport: linear problem + generalized quicksort.

2016 2017 2018 2019 2020 2021

Symbolic matrices – KeOps

Optimal transport – GeomLoss

Shape analysis

Deep learning

Registration

Clinical app.

30

Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Freyr Sverrisson Shen Zhengyang

+ Marc Niethammer, Bruno Correia, Michael Bronstein…
31

Our contribution to the community

KeOps and GeomLoss are:

• Fast : 10 to 1,000 speedup vs. standard GPU implementations.

• Memory-efficient: 𝑂(N), not 𝑂(N2).
• Versatile, with a transparent interface: freedom!

• Powerful and well-documented: research-friendly.

• Slow with large vectors of dimension D > 100.

Coming soon:

→ Approximation strategies (Nyström, etc.) in KeOps.

→ Wasserstein barycenters and grid images in GeomLoss.

32

Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf 33

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf

References

References i

M. Agueh and G. Carlier.

Barycenters in the Wasserstein space.

SIAM Journal on Mathematical Analysis, 43(2):904–924, 2011.

Dimitri P Bertsekas.

A distributed algorithm for the assignment problem.

Lab. for Information and Decision SystemsWorking Paper, M.I.T., Cambridge, MA, 1979.

34

References ii

Christophe Chnafa, Simon Mendez, and Franck Nicoud.

Image-based large-eddy simulation in a realistic left heart.

Computers & Fluids, 94:173–187, 2014.

Haili Chui and Anand Rangarajan.

A new algorithm for non-rigid point matching.

In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on,

volume 2, pages 44–51. IEEE, 2000.

35

References iii

Adam Conner-Simons and Rachel Gordon.

Using ai to predict breast cancer and personalize care.

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507,

2019.

MIT CSAIL.

Marco Cuturi.

Sinkhorn distances: Lightspeed computation of optimal transport.

In Advances in Neural Information Processing Systems, pages 2292–2300, 2013.

36

http://news.mit.edu/2019/using-ai-predict-breast-cancer-and-personalize-care-0507

References iv

Steven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.

New algorithms for 2d and 3d point matching: Pose estimation and

correspondence.

Pattern recognition, 31(8):1019–1031, 1998.

Leonid V Kantorovich.

On the translocation of masses.

In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199–201, 1942.

37

References v

Harold W Kuhn.

The Hungarian method for the assignment problem.

Naval research logistics quarterly, 2(1-2):83–97, 1955.

Jeffrey J Kosowsky and Alan L Yuille.

The invisible hand algorithm: Solving the assignment problem with statistical

physics.

Neural networks, 7(3):477–490, 1994.

38

References vi

Florent Leclercq.

Bayesian optimization for likelihood-free cosmological inference.

Physical Review D, 98(6):063511, 2018.

Bruno Lévy.

A numerical algorithm for l2 semi-discrete optimal transport in 3d.

ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693–1715, 2015.

39

References vii

Christian Ledig, Andreas Schuh, Ricardo Guerrero, Rolf A Heckemann, and Daniel

Rueckert.

Structural brain imaging in Alzheimer’s disease and mild cognitive impairment:

biomarker analysis and shared morphometry database.

Scientific reports, 8(1):11258, 2018.

Quentin Mérigot.

A multiscale approach to optimal transport.

In Computer Graphics Forum, volume 30, pages 1583–1592. Wiley Online Library, 2011.

40

References viii

Bernhard Schmitzer.

Stabilized sparse scaling algorithms for entropy regularized transport problems.

SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

41

	1. Symbolic matrices
	Applications
	2. Optimal transport
	3. Geometric deep learning
	Conclusion
	Appendix
	References

