Optimal transport with 3D shapes

Jean Feydy
HeKA team, Inria Paris
Inserm, Université Paris-Cité

6th of December, 2023
G-Stats seminar
Epione Inria team, Inria Sophia Antipolis

Who am I?

Background in mathematics and data sciences:
2012-2016 ENS Paris, mathematics.
2014-2015 M2 mathematics, vision, learning at ENS Cachan.
2016-2019 PhD thesis in medical imaging with Alain Trouvé at ENS Cachan.
2019-2021 Geometric deep learning with Michael Bronstein at Imperial College. 2021+ Medical data analysis in the HeKA INRIA team (Paris).

HeKA : a translational research team for public health

Hôpitaux

Inria Inserm

Universités

My main motivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
\Longrightarrow pyKeOps library for distance and kernel matrices, $500 \mathrm{k}+$ downloads.
2. Scale up pharmacovigilance to the full French population:
\Longrightarrow survivalGPU, a fast re-implementation of the R survival package.
3. Ease access to modern statistical shape analysis:
\Longrightarrow GeomLoss, truly scalable optimal transport in Python.
\Longrightarrow scikit-shapes, to be released soon.

Today's talk - assuming that you would enjoy some applied maths

1. The optimal transport problem.
2. Efficient discrete solvers.
3. Applications and open problems.

Optimal transport?

Optimal transport (OT) generalizes sorting to spaces of dimension $\mathbf{D}>1$

If $\mathrm{A}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{N}}\right)$ and $\mathrm{B}=\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{N}}\right)$
are two clouds of N points in \mathbb{R}^{D}, we define:

$$
\mathrm{OT}(\mathrm{~A}, \mathrm{~B})=\min _{\sigma \in \mathcal{S}_{\mathrm{N}}} \frac{1}{2 \mathrm{~N}} \sum_{\mathrm{i}=1}^{\mathrm{N}}\left\|\mathrm{x}_{i}-\mathrm{y}_{\sigma(i)}\right\|^{2}
$$

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P :

$$
\mathrm{OT}(\mathrm{~A}, \mathrm{~B})=\min _{\mathrm{P} \in \mathbb{R}^{\wedge} \times \mathrm{N}} \frac{1}{2 \mathrm{~N}} \sum_{\mathrm{i}, \mathrm{j}=1}^{\mathrm{N}} \mathrm{P}_{i, j} \cdot\left\|\mathrm{x}_{i}-\mathrm{y}_{j}\right\|^{2},
$$

$$
\text { s.t. } \quad \mathrm{P}_{i, j} \geqslant 0 \underbrace{\sum_{j} \mathrm{P}_{i, j}=1}_{\text {Each source point... }}
$$

$$
\underbrace{\sum_{i} \mathrm{P}_{i, j}=1}_{\text {is transported onto the target. }}
$$

Practical use

Alternatively, we understand OT as:

- Nearest neighbor projection + incompressibility constraint.
- Fundamental example of linear optimization over the transport plan $\mathrm{P}_{i, j}$.

This theory induces two main quantities:

- The transport plan $\mathrm{P}_{i, j} \simeq$ the optimal mapping $x_{i} \mapsto y_{\sigma(i)}$.
- The "Wasserstein" distance $\sqrt{\mathrm{OT}(\mathrm{A}, \mathrm{B})}$.

The optimal transport plan

The optimal transport plan

Before
After

The optimal transport plan

Before

The optimal transport plan

OT induces a geometry-aware distance between probability distributions [PC18]

Gauss map $\quad \mathcal{N}:(m, \sigma) \in \mathbb{R} \times \mathbb{R}_{\geqslant 0} \quad \mapsto \quad \mathcal{N}(m, \sigma) \in \mathbb{P}(\mathbb{R})$.
If the space of probability distributions $\mathbb{P}(\mathbb{R})$ is endowed with a given metric, what is the "pull-back" geometry on the space of parameters (m, σ) ?

OT on $\mathcal{N}(m, \sigma)$
\rightarrow Flat Euclidean metric on (m, σ).

How should we solve the OT problem?

Duality: central planning with NM variables \simeq outsourcing with $\mathbf{N}+\mathbf{M}$ variables

$$
\begin{gathered}
\mathrm{OT}(\mathrm{~A}, \mathrm{~B})=\min _{\pi}\langle\pi, \mathrm{C}\rangle, \text { with } \mathrm{C}\left(x_{i}, y_{j}\right)=\frac{1}{p}\left\|x_{i}-y_{j}\right\|^{p} \quad \longrightarrow \text { Assignment } \\
\text { s.t. } \pi \geqslant 0, \quad \pi \mathbf{1}=\mathrm{A}, \quad \pi^{\top} \mathbf{1}=\mathrm{B}
\end{gathered}
$$

$\sum_{i, j} \pi_{i, j} \mathrm{C}\left(x_{i}, y_{j}\right)$

Duality: central planning with NM variables \simeq outsourcing with $\mathbf{N}+\mathbf{M}$ variables

$$
\begin{gathered}
\mathrm{OT}(\mathrm{~A}, \mathrm{~B})=\min _{\pi}\langle\pi, \mathrm{C}\rangle, \text { with } \mathrm{C}\left(x_{i}, y_{j}\right)=\frac{1}{p}\left\|x_{i}-y_{j}\right\|^{p} \quad \longrightarrow \text { Assignment } \\
\text { s.t. } \pi \geqslant 0, \quad \pi \mathbf{1}=\mathrm{A}, \quad \pi^{\top} \mathbf{1}=\mathrm{B}
\end{gathered}
$$

$\sum_{i, j} \pi_{i, j} \mathrm{C}\left(x_{i}, y_{j}\right)$

$$
\max _{f, g}
$$

$$
\langle\mathrm{A}, f\rangle+\langle\mathrm{B}, g\rangle
$$

$$
\text { s.t. } \quad f\left(x_{i}\right)+g\left(y_{j}\right) \leqslant \mathrm{C}\left(x_{i}, y_{j}\right),
$$

Duality: central planning with NM variables \simeq outsourcing with $\mathbf{N}+\mathbf{M}$ variables

$$
\begin{gathered}
\mathrm{OT}(\mathrm{~A}, \mathrm{~B})=\min _{\pi}\langle\pi, \mathrm{C}\rangle, \text { with } \mathrm{C}\left(x_{i}, y_{j}\right)=\frac{1}{p}\left\|x_{i}-y_{j}\right\|^{p} \quad \longrightarrow \text { Assignment } \\
\text { s.t. } \pi \geqslant 0, \quad \pi \mathbf{1}=\mathrm{A}, \quad \pi^{\top} \mathbf{1}=\mathrm{B}
\end{gathered}
$$

$\sum_{i, j} \pi_{i, j} \mathrm{C}\left(x_{i}, y_{j}\right)$

$$
\begin{aligned}
=\max _{f, g} & \langle\mathrm{~A}, f\rangle+\langle\mathrm{B}, g\rangle \\
\text { s.t. } & f\left(x_{i}\right)+g\left(y_{j}\right) \leqslant \mathrm{C}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Being too greedy... doesn't work!

$$
\begin{aligned}
\mathrm{OT}(\alpha, \beta)= & \max _{\substack{\left(f_{i}\right) \in \mathbb{R}^{\mathrm{N}} \\
\left(g_{j}\right) \in \mathbb{R}^{\mathrm{M}}}} \sum_{i=1}^{\mathrm{N}} \alpha_{i} f_{i}+\sum_{j=1}^{\mathrm{M}} \beta_{j} g_{j} \\
& \text { s.t. } \forall i, j, f_{i}+g_{j} \leqslant \mathrm{C}\left(x_{i}, y_{j}\right)
\end{aligned}
$$

Algorithm 3.1: Naive greedy algorithm
1: $f_{i}, g_{j} \leftarrow \mathbf{0}_{\mathbb{R}^{\mathrm{N}}}, \mathbf{0}_{\mathbb{R}^{\mathrm{M}}}$
2: repeat
3: $\quad f_{i} \leftarrow \min _{j=1}^{\mathrm{M}}\left[\mathbf{C}\left(x_{i}, y_{j}\right)-g_{j}\right]$
4: $\quad g_{j} \leftarrow \min _{i=1}^{\mathrm{N}}\left[\mathrm{C}\left(x_{i}, y_{j}\right)-f_{i}\right]$
5: until convergence.
6: return f_{i}, g_{j}

The auction algorithm: take it easy with a slackness $\varepsilon>0$

The Sinkhorn algorithm: use a softmin, get a well-defined optimum

The symmetric Sinkhorn algorithm: stay close to the diagonal if $\mathbf{A} \simeq B$

Remark 1: a streamlined algorithm

One key operation - the soft, weighted distance transform:

$$
\forall i \in[1, \mathrm{~N}], f\left(x_{i}\right) \leftarrow \min _{y \sim \beta}\left[\mathrm{C}\left(x_{i}, y\right)-g(y)\right]=-\varepsilon \log \sum_{j=1}^{\mathrm{M}} \beta_{j} \exp \frac{1}{\varepsilon}\left[g_{j}-\mathrm{C}\left(x_{i}, y_{j}\right)\right] .
$$

Similar to the chamfer distance transform, convolution with a Gaussian kernel... Fast implementations with pyKeOps:

- If $\mathrm{C}\left(x_{i}, y_{j}\right)$ is a closed formula: bruteforce scales to $\mathrm{N}, \mathrm{M} \simeq 100 \mathrm{k}$ in 10 ms on a GPU.
- If A and B have a low-dimensional support: use a clustering and truncation strategy to get a x10 speed-up.
- If A and B are supported on a 2D or 3D grid and $\mathrm{C}\left(x_{i}, y_{j}\right)=\frac{1}{2}\left\|x_{i}-y_{j}\right\|^{2}$: use a separable distance transform to get a second x 10 speed-up. (N.B.: FFTs run into numerical accuracy issues.)

Remark 2: annealing works!

The Auction/Sinkhorn algorithms:

- Improve the dual cost by at least ε at each (early) step.
- Reach an ε-optimal solution with $(\max C) / \varepsilon$ steps.

Simple heuristic: run the optimization with decreasing values of ε.

$$
\begin{aligned}
& \varepsilon \text {-scaling } \\
= & \text { simulated annealing } \\
= & \text { multiscale strategy } \\
= & \text { divide and conquer }
\end{aligned}
$$

Remark 3: the curse of dimensionality

In low dimension:

- $\|x-y\|$ takes large and small values.
- The OT objective is peaky wrt. π.
- ε-optimal solutions are useful.
- OT(discrete samples) \simeq OT(underlying distributions)

In high dimension:

- $\|x-y\|$ gets closer to a constant.
- The OT objective is flat wrt. π.
- ε-optimal solutions are random.
- OT(discrete samples) \neq

OT(underlying distributions)

To recap 80+ years of work...

Key dates for discrete optimal transport with N points:

- [Kan42]: Dual problem of Kantorovitch.
- [Kuh55]: Hungarian methods in $O\left(\mathrm{~N}^{3}\right)$.
- [Ber79]: Auction algorithm in $O\left(\mathrm{~N}^{2}\right)$.
- [KY94]: SoftAssign = Sinkhorn + simulated annealing, in $O\left(\mathrm{~N}^{2}\right)$.
- [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
- [Cut13]: Start of the GPU era.
- [Mér11, Lév15, Sch19]: multi-scale solvers in $O(\mathrm{~N} \log \mathrm{~N})$.
- Solution, today: Multiscale Sinkhorn algorithm, on the GPU.
\Longrightarrow Generalized QuickSort algorithm.

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Visualizing F, G and the Brenier map $\nabla F\left(x_{i}\right)=-\frac{1}{\alpha_{i}} \partial_{x_{i}} \mathbf{O T}(\alpha, \beta)$

Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a $\times \mathbf{1 0 0}-\times \mathbf{1 0 0 0}$ acceleration:
Sinkhorn GPU $\xrightarrow{\times 10}+$ KeOps $\xrightarrow{\times 10}+$ Annealing $\xrightarrow{\times 10}+$ Multi-scale
With a precision of 1%, on a modern gaming GPU:
pip install
geomloss
+
modern GPU
$(1000 €)$$\quad \Longrightarrow$

10k points in $30-50 \mathrm{~ms}$

100k points in $\mathbf{1 0 0}$-200ms

Applications

A typical example in anatomy: lung registration "Exhale - Inhale"

Complex deformations, high resolution (50k-300k points), high accuracy (<1mm).

State-of-the-art networks - and their limitations

Point neural nets, in practice:

- Compute descriptors at all scales.
- Match them using geometric layers.
- Train on synthetic deformations.

Strengths and weaknesses:

- Good at pairing branches.
- Hard to train to high accuracy.
\Longrightarrow Complementary to OT.

Three-steps registration

This pragmatic method:

- Is easy to train on synthetic data.
- Scales up to high-resolution: 100k points in 1 s .
- Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport, Shen, Feydy et al., NeurIPS 2021.

Three-steps registration

$$
\text { Barycenter } \mathrm{A}^{*}=\arg \min _{\mathrm{A}} \sum_{i=1}^{4} \lambda_{i} \operatorname{Loss}\left(\mathrm{~A}, \mathrm{~B}_{i}\right) .
$$

Euclidean barycenters.

$$
\operatorname{Loss}(\mathrm{A}, \mathrm{~B})=\|\mathrm{A}-\mathrm{B}\|_{L^{2}}^{2}
$$

Wasserstein barycenters.
$\operatorname{Loss}(\mathrm{A}, \mathrm{B})=\mathrm{OT}(\mathrm{A}, \mathrm{B})$

Wasserstein barycenters

From a computational perspective:

- The problem is convex (easy) wrt. the weights.
- The support of the barycenter lies in the convex hull of the input distributions.

The curse of dimensionality hits hard:

- In high dimension, identifying the support can become NP-hard.
- In dimensions 2 and 3, we can just use a grid and recover super fast algorithms. Computing OT distances and barycenters between density maps is a solved problem.
\Longrightarrow We can now easily do manifold learning with e.g. UMAP in Wasserstein spaces of 2D and 3D distributions.

An example: Anna Song's exploration of 3D shape textures [Son22]

Conclusion

Genuine team work

Benjamin Charlier

Alain Trouvé

Joan Glaunès

Marc Niethammer

Thibault Séjourné

Shen Zhengyang
Shen Zhengyang

F.-X. Vialard

Olga Mula

Gabriel Peyré

Hieu Do

Key points

- Optimal Transport = generalized sorting :
\longrightarrow Super-fast solvers on simple domains (esp. 2D/3D spaces).
\longrightarrow Simple registration for shapes that are close to each other.
$\longrightarrow \quad$ Fundamental tool at the intersection of geometry and statistics.
$\longrightarrow \quad$ Can we extend recent computational advances to topology-aware metrics?
- GPUs are more versatile than you think.
\longrightarrow Ongoing work to provide fast GPU backends to researchers, going beyond what Google and Facebook are ready to pay for.

Documentation and tutorials are available online

$\Longrightarrow \quad$ www.kernel-operations.io

www.jeanfeydy.com/geometric_data_analysis.pdf

References

References i

(國) M. Agueh and G. Carlier.
Barycenters in the Wasserstein space.
SIAM Journal on Mathematical Analysis, 43(2):904-924, 2011.
Dimitri P Bertsekas.
A distributed algorithm for the assignment problem.
Lab. for Information and Decision Systems Working Paper, M.I.T., Cambridge, MA, 1979.

圊 Haili Chui and Anand Rangarajan.
A new algorithm for non-rigid point matching.
In Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 2, pages 44-51. IEEE, 2000.

目 Marco Cuturi.
Sinkhorn distances: Lightspeed computation of optimal transport.
In Advances in Neural Information Processing Systems, pages 2292-2300, 2013.

References iif

Rteven Gold, Anand Rangarajan, Chien-Ping Lu, Suguna Pappu, and Eric Mjolsness.
New algorithms for 2d and 3d point matching: Pose estimation and correspondence.

Pattern recognition, 31(8):1019-1031, 1998.
圊 Leonid V Kantorovich.
On the translocation of masses.
In Dokl. Akad. Nauk. USSR (NS), volume 37, pages 199-201, 1942.

References iv

圊 Harold W Kuhn.
The Hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83-97, 1955.
國 Jeffrey J Kosowsky and Alan L Yuille.
The invisible hand algorithm: Solving the assignment problem with statistical physics.

Neural networks, 7(3):477-490, 1994.

References v

目 Bruno Lévy.
A numerical algorithm for $\mathbf{l 2}$ semi-discrete optimal transport in 3d.
ESAIM: Mathematical Modelling and Numerical Analysis, 49(6):1693-1715, 2015.
围 Quentin Mérigot.
A multiscale approach to optimal transport.
In Computer Graphics Forum, volume 30, pages 1583-1592. Wiley Online Library, 2011.

References vi

Eabriel Peyré and Marco Cuturi.
Computational optimal transport.
arXiv preprint arXiv:1803.00567, 2018.
圊 Bernhard Schmitzer.
Stabilized sparse scaling algorithms for entropy regularized transport problems.

SIAM Journal on Scientific Computing, 41(3):A1443-A1481, 2019.

References vii

庫 Anna Song.
Generation of tubular and membranous shape textures with curvature functionals.

Journal of Mathematical Imaging and Vision, 64(1):17-40, 2022.

