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The Diffeomorphic Registration problem

Registrate a shape A to a shape B
through a (rigid, diffeomorphic, etc.)
transformation ¢

OO A — p(A) ~ B

Figure: Matching a curve to another.



The Diffeomorphic Registration problem

Registrate a shape A to a shape B
through a (rigid, diffeomorphic, etc.)
transformation ¢

®) 0 A — ¢(A) ~ B.
o Variational setting : minimize
E(p) = Reg(y) + d(e(A) — B).
~—— ~—
Regularization fidelity term

Figure: Matching a curve to another.



A Diffeomorphic Registration pipeline

Iterative Matching Algorithm
Input : source A

target B

while updates > tol do
Compute V,Reg(¢p).
Compute V., [d(p(A) — B)].
‘o — a-(
VeReg(p) + V., [d((A) — B)])"

. return ¢

ul

Output : matching transformation .
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Iterative Matching Algorithm
Input : source A

target B Diffeomorphic registration pipeline:

1 while updates > tol do - Optimization strategy: toolbox
2: Compute V,Reg(¢p).
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- Regularizer: deformation model

- Data attachment: rating formula

Output : matching transformation .




A Diffeomorphic Registration pipeline

Iterative Matching Algorithm
Input : source A

target B Diffeomorphic registration pipeline:
1 while updates > tol do - Optimization strategy: toolbox
2 Compute V Reg(¢p). o ,
) Compute V., [d(x(4) - B)]. Regularizer: deformation model
g ‘b — a - Data attachment: rating formula

V.Reg() + V., [d((A) - B )"
How do we define d(p(A) — B)?

5. return ¢

Output : matching transformation .




Unlabeled shapes are encoded as measures

We will work with:

P10x

|
% D20y, #:(A) A M:ZPI(SXU

o P30, =

® Dydy,

J
B «— v= Z qf(syj'
In practice: a
- Segmented surfaces:
List of (x;, p;) and (yj, g;).
- Volumetric Data:

p and g as grid images.



Kernel fidelities: the simplest formula for d(u — v)
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Figure: Raw signal (u — v).



Kernel fidelities: the simplest formula for d(u — v)

Choose a blurring function g, use

-~

¢ o de(p— v) = || gxp—gxv

N
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Figure: Blurred signal g x (u — v).
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Kernel fidelities: the simplest formula for d(u — v)
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Figure: Blurred signal g x (u — v).



Kernel fidelities: the simplest formula for d(u — v)

Choose a blurring function g, use
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where k = g x g is the kernel
i function.

Figure: Blurred signal g x (u — v).
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Kernel fidelities and long-distance vision

Using a kernel k, we have

o . dr(dx — 0y) = (6x — &y | R x (0x — dy))
— Rx—x) — k(x — y)
g (0= 5y) — k(y —X)+k(y - y)

= 2 [R(0) = R(x = )]




Kernel fidelities and long-distance vision

Using a kernel k, we have

. o dr(0x = dy) = (0x =&y | R * (6 = dy))
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Kernel fidelities and long-distance vision

Using a kernel k, we have

oo dr(6x — dy) = (6x = dy | R x (0x — dy))
— k(x—x) — k(x—)
— Ry =x) +k(y =)
= 2 [R(0) = R(x = y)].

g * (6x — dy)

3 0y



Kernel fidelities and long-distance vision

Using a kernel k, we have

. # dp(0x — dy) = (0x — &y [ R x (0x — dy))
— k(x—x) ~ k(x~ )
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Kernel fidelities and long-distance vision

Using a kernel k, we have

. o dr(dx — 0y) = (6x — &y | R x (0x — dy))
= R(x=x) = R(x—y)
9 (0= %) — k(y —X) + k(y — )

= 2 [R(0) = R(x = )]




Kernel fidelities and long-distance vision

[ ) L)
/
Wouldn't we prefer to use
| dy dx d(6c — &) = [Ix —y|*

instead ? 5



Introducing the Optimal Transport problem
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Introducing the Optimal Transport problem

D“;X;‘ a0y, In the simplest setting, assume that
Dz%+ Wﬁgm w1 and v have the same total mass.
- .qﬁyumyr De'ﬁ.ne.the_ OT fidelity through a
:\,. \%;yﬁ minimization on [-by-J matrices -
P4dx, . (7)) called transport plans
g1 G2 g3 Gs Gs Qe min Z '|Xf_yj|2
@000 - i
P1 . transport cost
p2. (vi) under the constraint that
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The regularized OT problem is tractable through a kernel factorization
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Optimality conditions show that the
OT plan can be written as a product

F(xi —y;) = a(x;) kR(x; = y;) b(y)),
where:

- The kernel function k is given by
RO —y;) = e~hue,

- aand b > 0 are functions
supported by {x;} and {y;}.



Computing the OT fidelity at a cost of 100-1000 convolutions

Sinkhorn Iterative Algorithm
Input : source =3 ;pidx
target v =737 q;dy,

i

Figure: Source and target measures.




Computing the OT fidelity at a cost of 100-1000 convolutions

Sinkhorn Iterative Algorithm

2
Parameter: k : x —s e~ XI°/¢

Figure: Data as seen by the kernel k.




Computing the OT fidelity at a cost of 100-1000 convolutions

Sinkhorn Iterative Algorithm

1. a < ones(size(p))
2. b + ones(size(q))

Sinkhorn Iteration 000

Figure: Starting estimate.




Computing the OT fidelity at a cost of 100-1000 convolutions

Sinkhorn Iterative Algorithm

3: while updates > tol do
/ . a<+p/(kR*b)

5: b<+q/ (kxa)
Sinkhorn Iteration 250

Figure: Computing the OT plan.




Computing the OT fidelity at a cost of 100-1000 convolutions

Sinkhorn Iterative Algorithm

S
A 6: returne- ((p,log(a)+1/2)

Sinkhorn Iteration 250 + <Qa lOg(b) + 1/2> )

Figure: Computing the OT plan. Output : fidelity We(u,v)




Bonus features, resulting in a flexible iterative framework

Minimize under the constraints that

M=p and M = gq.
In the paper, we show how to use:

U, - unbalanced measures,

min < .\X“-—y}\2> — g H(IN
0
Objective

+ p [KL(T1]p) + KL(T™1|q)]

NV
Kullback regularization



Bonus features, resulting in a flexible iterative framework

In the paper, we show how to use:
- Nesterov acceleration,
Sinkhorn Iteration 191

Figure: Accelerated Sinkhorn loop.



Bonus features, resulting in a flexible iterative framework

In the paper, we show how to use:

! - local features.

Sinkhorn Iteration 190

Figure: “Position + Orientation” OT.



Benefits of the entropic regularization

Adding a +¢3_; ;i log~;; regularization:

- Linear — Strictly convex problem.
- Compute the OT data attachment at the cost of 100-1000 convolutions with a
(separable) gaussian kernel

R:x—s e X/ (1)

10



Benefits of the entropic regularization

In the paper, we show how to fine-tune the underlying spring system I', which is a:

+ non-smooth
- global

correspondence map between source and target.

10



Benefits of the entropic regularization

OT (global coverage) + Diffeomorphic registration (smoothness) = ?
10



Using OT plans as spring systems driving a registration routine

L-BFGS Iteration 01

Figure: LDDMM + OT registration.

Derivatives of the OT fidelity can be
computed easily: plug itin any
standard registration toolbox.

The eventual registration is both
smooth and global.

"



Conclusion and practical use

- The 5-line Sinkhorn Algorithm
provides kernel methods with
long-range vision.

- As no target data is
“out-of-sight”, this idea should
improve the robustness of your
registration pipeline.

Figure: Examples of LDDMM+OT matchings.
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Thank you for your attention.



