
Optimal Transport for Diffeomorphic Registration
MICCAI 2017 – September 12

Jean Feydy1,2 Benjamin Charlier3,5 François-Xavier Vialard4,6 Gabriel Peyré1,5

1DMA – École Normale Supérieure, Paris, France 2CMLA – ENS Cachan, Cachan, France

3Institut Montpelliérain Alexander Grothendieck, Univ. Montpellier, Montpellier, France

4Univ. Paris-Dauphine - PSL Research, Paris, France 5CNRS, Paris, France 6INRIA Mokaplan, Paris, France

The Diffeomorphic Registration problem

Figure: Matching a curve to another.

Registrate a shape A to a shape B
through a (rigid, diffeomorphic, etc.)
transformation ϕ :

A −→ ϕ(A) ' B.

Variational setting : minimize

E(ϕ) = Reg(ϕ)︸ ︷︷ ︸
Regularization

+ d(ϕ(A)→ B)︸ ︷︷ ︸
fidelity term

.

1

The Diffeomorphic Registration problem

Figure: Matching a curve to another.

Registrate a shape A to a shape B
through a (rigid, diffeomorphic, etc.)
transformation ϕ :

A −→ ϕ(A) ' B.

Variational setting : minimize

E(ϕ) = Reg(ϕ)︸ ︷︷ ︸
Regularization

+ d(ϕ(A)→ B)︸ ︷︷ ︸
fidelity term

.

1

A Diffeomorphic Registration pipeline

Iterative Matching Algorithm
Input : source A

target B
1: while updates > tol do
2: Compute ∇ϕReg(ϕ).
3: Compute ∇ϕ [d(ϕ(A)→ B)].
4: “ϕ← ϕ − α ·

(
∇ϕReg(ϕ) +∇ϕ [d(ϕ(A)→ B)]

)
”

5: return ϕ

Output : matching transformation ϕ.

Diffeomorphic registration pipeline:
• Optimization strategy: toolbox
• Regularizer: deformation model
• Data attachment: rating formula

How do we define d(ϕ(A)→ B)?

2

A Diffeomorphic Registration pipeline

Iterative Matching Algorithm
Input : source A

target B
1: while updates > tol do
2: Compute ∇ϕReg(ϕ).
3: Compute ∇ϕ [d(ϕ(A)→ B)].
4: “ϕ← ϕ − α ·

(
∇ϕReg(ϕ) +∇ϕ [d(ϕ(A)→ B)]

)
”

5: return ϕ

Output : matching transformation ϕ.

Diffeomorphic registration pipeline:
• Optimization strategy: toolbox
• Regularizer: deformation model
• Data attachment: rating formula

How do we define d(ϕ(A)→ B)?

2

A Diffeomorphic Registration pipeline

Iterative Matching Algorithm
Input : source A

target B
1: while updates > tol do
2: Compute ∇ϕReg(ϕ).
3: Compute ∇ϕ [d(ϕ(A)→ B)].
4: “ϕ← ϕ − α ·

(
∇ϕReg(ϕ) +∇ϕ [d(ϕ(A)→ B)]

)
”

5: return ϕ

Output : matching transformation ϕ.

Diffeomorphic registration pipeline:
• Optimization strategy: toolbox
• Regularizer: deformation model
• Data attachment: rating formula

How do we define d(ϕ(A)→ B)?

2

Unlabeled shapes are encoded as measures

→

→

We will work with:

ϕ(A) ←→ µ=
I∑
i=1

piδxi ,

B ←→ ν=
J∑
j=1

qjδyj .

In practice:
• Segmented surfaces:

List of (xi,pi) and (yj,qj).
• Volumetric Data:

p and q as grid images.
3

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Raw signal (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2
= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Blurred signal g ? (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2

= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Blurred signal g ? (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2
= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Blurred signal g ? (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2
= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Blurred signal g ? (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2
= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities: the simplest formula for d(µ→ ν)

Figure: Blurred signal g ? (µ− ν).

Choose a blurring function g, use

dk(µ→ ν) = ‖g ? µ− g ? ν ‖2L2
= 〈µ− ν | k ? (µ− ν) 〉 ,

where k = g ? g is the kernel
function.

4

Kernel fidelities and long-distance vision

g ? (δx − δy)

δx δy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Kernel fidelities and long-distance vision

g ? (δx − δy)

δxδy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Kernel fidelities and long-distance vision

g ? (δx − δy)

δx δy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Kernel fidelities and long-distance vision

g ? (δx − δy)

δxδy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Kernel fidelities and long-distance vision

g ? (δx − δy)

δxδy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Kernel fidelities and long-distance vision

spring

δxδy

Using a kernel k, we have

dk(δx → δy) = 〈 δx − δy | k ? (δx − δy) 〉

= k(x − x)− k(x − y)
− k(y − x) + k(y − y)

= 2 [k(0)− k(x − y)] .

Wouldn’t we prefer to use

d(δx → δy) = ‖x − y‖2

instead ? 5

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

Introducing the Optimal Transport problem

In the simplest setting, assume that
µ and ν have the same total mass.
Define the OT fidelity through a
minimization on I-by-J matrices –
called transport plans Γ:

min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that

γi,j > 0,
∑
j

γi,j = pi,
∑
i

γi,j = qj.
6

The regularized OT problem is tractable through a kernel factorization

=

Optimality conditions show that the
OT plan can be written as a product

γi,j = Γ(xi → yj) = a(xi) k(xi − yj)b(yj),

where:
• The kernel function k is given by

k(xi − yj) = e−|xi−yj|2/ε.

• a and b > 0 are functions
supported by {xi} and {yj}.

7

Computing the OT fidelity at a cost of 100-1000 convolutions

Figure: Source and target measures.

Sinkhorn Iterative Algorithm
Input : source µ =

∑
i piδxi

target ν =
∑

j qjδyj
Parameter : k : x 7→ e−|x|2/ε

1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈p, log(a) + 1/2 〉

+ 〈q, log(b) + 1/2 〉
)

Output : fidelity Wε(µ, ν)
8

Computing the OT fidelity at a cost of 100-1000 convolutions

Figure: Data as seen by the kernel k.

Sinkhorn Iterative Algorithm
Input : source µ =

∑
i piδxi

target ν =
∑

j qjδyj
Parameter : k : x 7→ e−|x|2/ε

1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈p, log(a) + 1/2 〉

+ 〈q, log(b) + 1/2 〉
)

Output : fidelity Wε(µ, ν)
8

Computing the OT fidelity at a cost of 100-1000 convolutions

Figure: Starting estimate.

Sinkhorn Iterative Algorithm
Input : source µ =

∑
i piδxi

target ν =
∑

j qjδyj
Parameter : k : x 7→ e−|x|2/ε

1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈p, log(a) + 1/2 〉

+ 〈q, log(b) + 1/2 〉
)

Output : fidelity Wε(µ, ν)
8

Computing the OT fidelity at a cost of 100-1000 convolutions

Figure: Computing the OT plan.

Sinkhorn Iterative Algorithm
Input : source µ =

∑
i piδxi

target ν =
∑

j qjδyj
Parameter : k : x 7→ e−|x|2/ε

1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈p, log(a) + 1/2 〉

+ 〈q, log(b) + 1/2 〉
)

Output : fidelity Wε(µ, ν)
8

Computing the OT fidelity at a cost of 100-1000 convolutions

Figure: Computing the OT plan.

Sinkhorn Iterative Algorithm
Input : source µ =

∑
i piδxi

target ν =
∑

j qjδyj
Parameter : k : x 7→ e−|x|2/ε

1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈p, log(a) + 1/2 〉

+ 〈q, log(b) + 1/2 〉
)

Output : fidelity Wε(µ, ν)
8

Bonus features, resulting in a flexible iterative framework

Minimize under the constraints that

Γ1 = p and ΓT1 = q.

⇓
min
Γ>0

〈
Γ , |xi − yj|2

〉
− εH(Γ)︸ ︷︷ ︸

Objective

+ ρ
[
KL(Γ1 |p) + KL(ΓT1 |q)

]
︸ ︷︷ ︸

Kullback regularization

In the paper, we show how to use:
• unbalanced measures,
• Nesterov acceleration,
• local features.

9

Bonus features, resulting in a flexible iterative framework

Figure: Accelerated Sinkhorn loop.

In the paper, we show how to use:
• unbalanced measures,
• Nesterov acceleration,
• local features.

9

Bonus features, resulting in a flexible iterative framework

Figure: “Position + Orientation” OT.

In the paper, we show how to use:
• unbalanced measures,
• Nesterov acceleration,
• local features.

9

Benefits of the entropic regularization

Adding a +ε
∑

i,j γi,j log γi,j regularization:

• Linear −→ Strictly convex problem.
• Compute the OT data attachment at the cost of 100-1000 convolutions with a
(separable) gaussian kernel

k : x 7→ e−x2/ε. (1)

In the paper, we show how to fine-tune the underlying spring system Γ, which is a:

• non-smooth
• global

correspondence map between source and target.

OT (global coverage) + Diffeomorphic registration (smoothness) = ?

10

Benefits of the entropic regularization

Adding a +ε
∑

i,j γi,j log γi,j regularization:

• Linear −→ Strictly convex problem.
• Compute the OT data attachment at the cost of 100-1000 convolutions with a
(separable) gaussian kernel

k : x 7→ e−x2/ε. (1)

In the paper, we show how to fine-tune the underlying spring system Γ, which is a:

• non-smooth
• global

correspondence map between source and target.

OT (global coverage) + Diffeomorphic registration (smoothness) = ?

10

Benefits of the entropic regularization

Adding a +ε
∑

i,j γi,j log γi,j regularization:

• Linear −→ Strictly convex problem.
• Compute the OT data attachment at the cost of 100-1000 convolutions with a
(separable) gaussian kernel

k : x 7→ e−x2/ε. (1)

In the paper, we show how to fine-tune the underlying spring system Γ, which is a:

• non-smooth
• global

correspondence map between source and target.

OT (global coverage) + Diffeomorphic registration (smoothness) = ?

10

Using OT plans as spring systems driving a registration routine

Figure: LDDMM + OT registration.

Derivatives of the OT fidelity can be
computed easily: plug it in any
standard registration toolbox.

The eventual registration is both
smooth and global.

11

Conclusion and practical use

Figure: Examples of LDDMM+OT matchings.

• The 5-line Sinkhorn Algorithm
provides kernel methods with
long-range vision.

• As no target data is
“out-of-sight”, this idea should
improve the robustness of your
registration pipeline.

12

Thank you for your attention.

12

