
Optimal transport for diffeomorphic registration
We define a fidelity term based on Optimal Transport to compare unlabeled shape data, and couple it we a registration algorithm.
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The Measure+Kernel Paradigm

We focus on the registration of a shape A to
a shape B through a (rigid, diffeomorphic, etc.)
transformation ϕ :

A −→ ϕ(A) ' B.

In a variational setting, one chooses a transforma-
tion ϕ minimizing an energy

E(ϕ) = Reg(ϕ)︸ ︷︷ ︸
Regularization

+ d(ϕ(A)→ B)︸ ︷︷ ︸
fidelity term

.

Registration toolboxes thus require fidelity rou-
tines d between unlabeled shapes ϕ(A) and B .
Conveniently, one represents those as measures:

ϕ(A)↔ µ =
I∑

i=1

piδxi
and B ↔ ν =

J∑
j=1

qjδyj
.

• If ϕ(A) is a segmented surface, each weighted
dirac piδxi

stands for a triangle.

• If ϕ(A) is a segmented density image, each
weighted dirac piδxi

stands for a voxel.

Then, one typically chooses a blurring function Gσ

associated to a kernel k = Gσ ? Gσ and use

d(µ→ ν) = ‖Gσ ? µ−Gσ ? ν ‖2
L2 = 〈µ−ν | k?(µ−ν) 〉.

This simple fidelity can be computed at the cost of
a single convolution through the data (µ− ν).

Fig. 1 : Smoothed data Gσ ? (µ − ν) for two dif-
ferent scales σ. (a) Fine kernels are not suited to
large deformations, whereas (b) heavy-tailed ker-
nels can be hard to tune.

Our Contribution

An Optimal Transport
plan is a rough global
matching, akin to
a spring system.

It may tear shapes
apart.
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Use it to drive a smooth registration.

This global gradient
allows a smooth
registration toolbox
to reach quickly
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source registered
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At convergence, the
smallest details can
be retrieved without
recurring to a coarse-
-to-fine scheme.

The proposed data attachment term is:

• Global, unlike kernel methods.

• Principled, as it relies on a blooming mathematical field.

• Differentiable, pluggable in any registration toolbox.

• Versatile, as it covers all scales and can be adapted to any
feature space.

• Affordable, at a cost of 100-1000 gaussian convolutions per
transport plan.

The Math Behind It

In the simplest setting, we assume that

µ =
I∑

i=1

piδxi
and ν =

J∑
j=1

qjδyj

have the same total mass. Then, we define the
Wasserstein fidelity term through a minimization
on I-by-J matrices – called transport plans Γ:

Wε(µ, ν)︸ ︷︷ ︸
= d(µ→ν)

= min
Γ

∑
i,j

γi,j · |xi − yj|2︸ ︷︷ ︸
transport cost

+ ε
∑
i,j

γi,j log γi,j︸ ︷︷ ︸
entropic regularization

under the constraint that Γ = (γi,j) satisfies

∀i, j, γi,j > 0,
∑

j

γi,j = pi,
∑

i

γi,j = qj. (1)

Optimality conditions show that the OT plan can
be written as a product

γi,j = Γ(xi→ yj) = a(xi) k(xi, yj) b(yj), where:

• The kernel function k is given by

k(xi, yj) = k(xi − yj) = e−|xi−yj|2/ε.

• a and b are nonnegative functions supported
respectively by {xi} and {yj}.

The Sinkhorn theorem then asserts that a and b are
uniquely determined by eq. (1), which now reads

a = p

k ? b
, b = q

k ? a
.

√
ε

√
ε

Fig. 2 : Two OT plans computed with different reg-
ularization scales

√
ε. Increasing this parameter

results in a lower computational cost.

The Algorithm

Sinkhorn Iterative Algorithm
Parameter : k : x 7→ e−|x|

2/ε

Input : source µ =
∑

i piδxi

target ν =
∑

j qjδyj

Output : fidelity Wε(µ, ν)
1: a← ones(size(p))
2: b← ones(size(q))
3: while updates > tol do
4: a← p / (k ? b)
5: b← q / (k ? a)
6: return ε ·

(
〈 p, log(a) + 1/2 〉

+〈 q, log(b) + 1/2 〉
)

If the data lies on a grid, k ? · is a
separable gaussian convolution.

If the data is sparse, k ? · is the prod-
uct with the kernel matrix

(Kij) = k(xi, yj)

and its transpose.

In Practice
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Fig. 3 : Sinkhorn iterations propagate
along both shapes the information
encoded within (Kij).

The practical convergence rate of the
Sinkhorn algorithm is not well un-
derstood yet, but computing an opti-
mal transport plan typically requires
∼1000 convolutions, depending on ε.
Our Matlab and Python imple-
mentations are freely available:
github.com/jeanfeydy/lddmm-ot

Bonus Features
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Fig. 4 : Use OT plans to registrate ex-
otic data types.

• Use Unbalanced Transport,
relaxing the constraints of eq. (1)
with a soft penalty term.

• Generalize the algorithm to
Features Spaces such as the
“position + orientation” space.

• Compute seamlessly the
derivatives of the fidelity.

• Implement the algorithm in the
log-domain with Nesterov
acceleration for increased
numerical stability and speed.

Take-Home Points

• The Sinkhorn algorithm, an
iterative globalization trick,
provides small kernels with
long-distance vision.

• Computed at the cost of a few
hundred convolutions, Optimal
Transport plans can be used as
spring systems driving a
diffeomorphic registration
routine.

• The resulting framework is more
robust than a kernel-based one,
as no target data is “out-of-sight”.

• This new scheme will find its use
at the coarsest scales, where its
properties are worth the
computational overhead.
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