Optimal transport for diffeomorphic registration

We define a fidelity term based on Optimal Transport to compare unlabeled shape data, and couple it we a registration algorithm.

Jean Feydy'? Benjamin Charlier’> Frangois-Xavier Vialard*® Gabriel Peyrée!»

IDMA - Ecole Normale Supérieure, Paris, France CMLA - ENS Cachan, Cachan, France
SInstitut Montpelliérain Alexander Grothendieck, Univ. Montpellier, Montpellier, France
‘Univ. Paris-Dauphine - PSL Research, Paris, France °CNRS, Paris, France ’INRIA Mokaplan, Paris, France

The Measure+Kernel Paradigm Our Contribution The Math Behind It

In the simplest setting, we assume that
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have the same total mass. Then, we define the
through a minimization
on I-by-J matrices - called transport plans I':

We focus on the registration of a shape A to
a shape B through a (rigid, diffeomorphic, etc.)
transformation o:
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In a variational setting, one chooses a transforma-
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Registration toolboxes thus require fidelity rou- = ) P
tines d between shapes ¢(A) and B. Warpeddgrld This gradient under the constraint that I' = (v, ;) satisfies
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. Optimality conditions show that the OT plan can
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\/ be written as a product

- If (A) Is a segmented surface, each weighted
dirac p;é,. stands for a triangle.
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vij = D@ = y;) = alx;) k(z,y;) bly;), where:

Walit a little bit...

- The kernel function & is given by
k(ziy;) = kzi —y;) =

- ¢ and b are nonnegative functions supported

- If o(A) Is a segmented density image, each

weighted dirac p;0,, stands for a voxel. o—lzi—uil*/e

Then, one typically chooses a blurring function G, At convergence, the

: s smallest can :
associated to a k=G, xG, and use source registered 8 be retrieved without respectively by 1z;} and {y;}.
to the target recurring to a coarse-
dp = v) = |Gorpp— Goxv |72 = (p—v | kx(p—r)). -to-fine scheme., The then asserts thataand b are
o . \ determined by eq. (1), which now reads
This simple fidelity can be computed at the cost of
N _ 4
a through the data (1 — v). a = b e
The proposed data attachment term is: Ve Y Ve 3
, unlike kernel methods. /(
i ! - as it relies on a blooming mathematical field. R | =308 f ™ ) )N
g l‘ - : pluggable in any registration toolbox. j”f‘“} J’f\"
as it covers all scales and can be adapted to any @ - @

feature space. Fig. 2: Two OT plans computed with different reg-

ularization scales /s. Increasing this parameter
results in a lower computational cost.

Fig. 1: Smoothed data G, ~ (n — v) for two dif-
ferent scales o. (a) Fine kernels are not suited to
large deformations, whereas (b) heavy-tailed ker-
nels can be hard to tune.

at a cost of 100-1000 gaussian convolutions per
transport plan.

The Algorithm In Practice Bonus Features Take-Home Points

Sinkhorn Iterative Algorithm

Ry It. 10 it. 50 - The Sinkhorn algorithm, an
Parameter: k : x — e I*17/¢ . .
S N ; S — iterative ,
nput :source =) pid, ~ \Y 20) SN > provides small kernels with
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along both shapes the information
encoded within (K;).
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(

+(q,log(b) +1/2)) - Generalize the algorithm to

such as the
“position + orientation” space.

* The resulting framework i1s more
than a kernel-based one,

If the data lies on a k% - Isa . o
- as no target data Is “out-of-sight”.

The practical convergence rate of the

bl lution. ' i ' -
Séparable convotution Sinkhorn algorithm is n(?t well un. . Compute seamlessly the
| | derstood yet, but computing an opti- of the fidelity. - This new scheme will find its use
Ifthe.data IS , k% 1s the prod- mal transport plan typically requires at the , Where its
uct with the kernel ~ convolutions, depending on e. - Implement the algorithm in the properties are worth the

with Nesterov
for increased
numerical stability and speed.

Our and Imple-
mentations are freely available:
github.com/jeanfeydy/lddmm-ot
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and Its transpose.
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