Fast geometric learning with symbolic matrices

Jean Feydy^{1,*} Joan A. Claunès^{2,*} Benjamin Charlier^{3,*} Michael M. Bronstein^{1,4}.

NeurIPS 2020, online – December 2020.

¹Imperial College London, ²Université de Paris, ³Université de Montpellier, ⁴Twitter *Equal contribution

Dense matrix Coefficients only

Dense matrices – large, contiguous arrays of numbers:

- + Convenient and well supported.
- Heavy load on the memories of our GPUs, with time-consuming transfers taking place between layers of CUDA registers.

1

Dense matrixSparse matrixCoefficients onlyCoordinates + coeffs

Sparse matrices – tensors that have few non-zero entries:

- + Represent large tensors with a small memory footprint.
- Outside of graph processing, few objects are sparse enough to really benefit from this representation.

Machine learning libraries represent most objects as tensors

Distance and kernel matrices, point convolutions, attention layers:

- + Linear memory usage: no more memory overflows.
- + We can optimize the use of registers for a $\times 10 \times 100$ speed-up vs. a standard PyTorch GPU baseline.

Our library comes with all the perks of a deep learning toolbox:

- + Transparent array-like interface.
- + Full support for automatic differentiation.
- + Comprehensive collection of **tutorials**, available online.

Under the hood: combines an optimized C++ engine with high-level binders for PyTorch, NumPy, Matlab and R (thanks to Ghislain Durif). (We welcome contributors for JAX, Julia and other frameworks!)

To get started: ⇒ pip install pykeops ← www.kernel-operations.io

A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:

import torch

```
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array
```

Turn dense arrays into symbolic matrices:

from pykeops.torch import LazyTensor x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large **symbolic matrix** of squared distances:

D_ij = ((x_i - y_j)**2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query: indices_i = D_ij.argmin(dim=1) # -> standard torch tensor

The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query, on par with the bruteforce CUDA scheme of the FAISS library... And can be used with any metric!

KeOps supports arbitrary formulas and variables with:

- Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
- **Operations:** +, ×, sqrt, exp, neural networks, etc.
- Advanced schemes: batch processing, block sparsity, etc.
- Automatic differentiation: seamless integration with PyTorch.

KeOps lets users work with millions of points at a time

Benchmark of a matrix-vector product with a N-by-N Gaussian kernel matrix between 3D point clouds.

KeOps lets users experiment freely with advanced methods

KeOps provides a **fast backend for research codes**:

- Interfaces well with standard libraries: SciPy, GPytorch, etc.
- Speeds up Gaussian process regression: see e.g. Kernel methods through the roof: handling billions of points efficiently, by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (NeurIPS 2020).
- Speeds up optimal transport solvers and point cloud convolutions by one or two orders of magnitude.
- Much more in the **paper**!

KeOps symbolic tensors:

- + Have a negligible **memory** footprint.
- + Provide a sizeable **speed-up** for geometric computations.
- Always rely on bruteforce computations.
- Are less interesting when the formula $F(x_i, y_j)$ is **too large**.

Our top priority for **early 2021** is to mitigate these weaknesses: we will add support for **Tensor cores** and standard **approximation strategies** – e.g. using trees or the Nyström method. Symbolic matrices are to geometric ML what sparse matrices are to graph processing.

We believe that **KeOps** will stimulate research on:

- Clustering methods: fast K-Means and EM iterations.
- Data representation: UMAP, fast KNN graphs with any metric.
- Kernel methods: kernel matrices.
- Gaussian processes: covariance matrices.
- Geometric deep learning: point convolutions.
- Natural language processing: transformer networks?

We'll be happy to **discuss** these questions with you!

Documentation and tutorials are available online

www.jeanfeydy.com/geometric_data_analysis.pdf