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Who am I?

2012–2016 ENS Paris,mathematics and applications.

2015 MVA thesis with Siemens Healthcare in Princeton.

2016–2019 PhD thesis with Alain Trouvé, computational anatomy;

TA/tutor in applied maths at the ENS Paris.

2019–2022 PostDoc with Michael Bronstein, geometric deep learning.

Family of medical doctors (radiologist, haematologist, GPs...):

strong motivation to work towards clinical solutions.

Make life easier for engineers and researchers in the field:

two libraries (KeOps, GeomLoss) to speed up geometric methods,

with new guarantees of robustness. 1



The medical imaging pipeline [Ptr19, EPW+11]

Sensor data

Signal processing

Raw image

Computational anatomy

High-level description

Statistics

Valuable information
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Computational anatomy [CSG19, LSG+18, CMN14]

Three main problems:

Spot patterns Analyze variations Fit models

3



Shape analysis [Ash07, Gla05]

Advection for images and volumes

Mesh deformation

=⇒ We need fast geometric primitives.

Problem: not supported well by NumPy, TensorFlow and PyTorch.
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Geometric data analysis, beyond convolutions

My work so far:

• Efficient GPU routines for point clouds, kernels, etc.:

−→ KeOps extension for PyTorch, NumPy, Matlab, R.

−→ Efficient support for “symbolic” arrays.

• Robust deformation and feature extraction architectures:

−→ Diffeomorphisms, elastic meshes, etc.

−→ Geometric deep learning on protein surfaces.

• Geometric distances between shapes and distributions:

−→ Wasserstein distance = optimal transport = sorting.

−→ Our focus today.
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Outline of the presentation – focus on Optimal Transport (OT)

Today, we will talk about:

1. Optimal Transport, from a geometric perspective.

2. Modern “QuickSort-like” solvers on CPU and GPU.

3. Main weaknesses of OT tools – with some workarounds.

4. The software suite that is currently being built to bring

reference implementations to the wider scientific community.
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Working with unlabeled point clouds



Life is easy when you have labels

Anatomical landmarks from A morphometric approach for the analysis of

body shape in bluefin tuna, Addis et al., 2009.
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Unfortunately, medical data is often unlabeled [EPW+11]

Surface meshes Segmentation masks

8



I understand that you have the same problem :-)
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Encoding unlabeled shapes as measures

Let’s enforce sampling invariance:

A −→ α =
N∑

i=1

αiδxi , B −→ β =
M∑
j=1

βjδyj .

→ →

10



A baseline setting: density registration

α =
N∑

i=1

αiδxi , β =
M∑
j=1

βjδyj .

N∑
i=1

αi = 1 =
M∑
j=1

βj

Display vi = − 1
αi
∇xiLoss(α, β).

Seamless extensions to:

•
∑

i αi 6=
∑

j βj, outliers [SFV
+19],

• curves and surfaces, more complex features [KCC17],

• variable weights αi. 11
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Simple distance-like functions between measures

• Nearest neighbours' Chamfer distance' soft-Hausdorff:

Projection-based −→ Degenerate gradients.

• Kernel distance' Blurred L2 norm, convolution-based:

Loss(α, β) = 1
2‖g ? (α− β)‖2L2(RD) = 1

2〈α− β , k ? (α− β) 〉

where k = (g ◦ (x 7→ −x)) ? g .

• Example: the Energy Distance, k(x, y) = −‖x− y‖:

Loss(α, β) =
∑
i

∑
j

αiβj ‖xi − yj‖

− 1
2

∑
i

∑
j

αiαj ‖xi − xj‖ − 1
2

∑
i

∑
j

βiβj ‖yi − yj‖ .
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Gradient flow as a toy registration problem

t = .00
13



Gradient flow as a toy registration problem

t = .25
13



Gradient flow as a toy registration problem

t = .50
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Gradient flow as a toy registration problem

t = 1.00
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Gradient flow as a toy registration problem

t = 5.00
13



Gradient flow as a toy registration problem

t = 10.00
13



TheWasserstein distance

We need clean gradients, without artifacts. Let’s sort our points.

Simple toy example in 1D :

source
δx1 δx2 δx3 δx4 δx5

target
δy3 δy5 δy2 δy4 δy1

assignment

σ∗ : [[1, 5]] → [[1, 5]]

OT(α, β) =
1

2N

N∑
i=1

|xi − yσ∗(i)|2

= min
σ∈SN

1

2N

N∑
i=1

|xi − yσ(i)|2

14
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Optimal transport generalizes sorting to D > 1

Minimize over N-by-Mmatrices

(transport plans) π :

OT(α, β) = min
π

∑
i,j

πi,j · 12 |xi − yj|2︸ ︷︷ ︸
transport cost

subject to πi,j > 0,∑
j

πi,j = αi,
∑
i

πi,j = βj.

15



The gradient of the Wasserstein distance is homogeneous

t = .00
16



The gradient of the Wasserstein distance is homogeneous

t = .25
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The gradient of the Wasserstein distance is homogeneous

t = .50
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The gradient of the Wasserstein distance is homogeneous

t = 1.00
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The gradient of the Wasserstein distance is homogeneous

t = 5.00
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The gradient of the Wasserstein distance is homogeneous

t = 10.00
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Key properties [Bre91]

The Wasserstein loss OT(α, β) is:

• Symmetric: OT(α, β) = OT(β, α) .

• Positive: OT(α, β) > 0 .

• Definite: OT(α, β) = 0 ⇐⇒ α = β .

• Translation-aware: OT(α, Translate~v(α) ) =
1
2‖~v ‖

2 .

• More generally, OT retrieves the unique gradient of a convex

function T = ∇ϕ that maps α onto β :

In dimension 1, (xi − xj) · (yσ(i) − yσ(j)) > 0

In dimension D, 〈 xi − xj , T(xi)− T(xj) 〉RD > 0 .

=⇒ Appealing generalization of an increasing mapping.

17



Can we scale this to real data?



Kantorovitch’s dual formulation

OT(α, β) = min
π

〈π , C 〉, with C(xi, yj) = 1
p‖xi − yj‖p −→ Assignment

s.t. π > 0, π 1 = α, πT1 = β

∑
i,j πi,j C(xi, yj)

∑
i αifi +

∑
j βjgj

=

max
f , g

〈α , f 〉 + 〈β , g 〉 −→ FedEx

s.t. f(xi) + g(yj) 6 C(xi, yj),

18
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How should we solve the OT problem?

Key dates:

• [Kan42]: Dual problem, O(N2) → O(N)memory footprint.

• [Kuh55]: Hungarianmethod in O(N3).

• [Ber79]: Auction algorithm in O(N2).

• [KY94]: SoftAssign = Sinkhorn + annealing, in O(N2).

• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.

• [Cut13]: Start of the GPU era.

• [Mér11, Lév15, Sch19]: Multiscale CPU solvers in O(N log N).

• Today: Multiscale Sinkhorn algorithm, on the GPU.

=⇒ Generalized QuickSort algorithm.

19



Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

OT plan in 2D.
20



Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 0, blur = 20
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 1, blur = 2−1
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 2, blur = 2−2
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 3, blur = 2−3
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 4, blur = 2−4
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 5, blur = 2−5
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Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 6, blur = 2−6
21



Visualizing F, G and the Brenier map ∇F(xi) = − 1
αi
∂xiOT(α, β)

Iteration 7, blur = .01
21



Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a×100 -×1000 acceleration:

Sinkhorn GPU
×10−−→ + KeOps

×10−−→ + Annealing
×10−−→ + Multiscale

With a precision of 1%, on a modern gaming GPU:

10k points in 30-50ms 100k points in 100-200ms

22



Geometric Loss functions for PyTorch

Our website: www.kernel-operations.io/geomloss

=⇒ pip install geomloss ⇐=

# Large point clouds in [0, 1]3

import torch
x = torch.rand(100000, 3, requires_grad=True).cuda()
y = torch.rand(200000, 3).cuda()

# Define a Wasserstein loss between sampled measures
from geomloss import SamplesLoss
loss = SamplesLoss(loss="sinkhorn", p=2)
L = loss(x, y) # By default, use constant weights

Soon: efficient support for images,meshes and generic metrics.

23



Optimal Transport, in practice



Wasserstein distance = Multi-dimensional sorting problem ?

The three regimes of Optimal Transport:

• α, β live in dimension 1:

=⇒ Simple sorting problem.

=⇒ Quicksort in O(N logN).

• α, β have a small intrinsic dimension:

=⇒ Rely on multiscale strategies.

=⇒Multiscale Sinkhorn in O(N logN) on the GPU.

• α, β live in dimension 10+:

=⇒ The matrix of distances ‖xi − yj‖ has very little structure.
=⇒ Compute all pairs in> O(N2).

=⇒Multiscale Sinkhorn algorithm'Multi-dimensional Quicksort.
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A global and geometric distance

A high-quality gradient…

But no preservation of topology!
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Optimal transport = cheap’n easy registration? Beware!

Before After
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Affordable geometric interpolation [AC11]

Barycenter α∗ = argmin
α

N∑
i=1

λi Loss(α , βi ) .

Linear barycenters Wasserstein barycenters

Loss(α, β) = ‖α− β‖2
L2

Loss(α, β) = OT(α, β)

27



Applications to medical imaging

Knee caps White matter bundles

28



Ongoing work: computational anatomy

Fast OT-based registration with Diffeomorphic and spline registration

S. Joutard, X. Hao, A. Young from KCL, e.g. Deformetrica LDDMM software

Z. Shen, M. Niethammer from UNC. with the Aramis Inria team.

29



Going further: better features and/or topology-aware models

We now know how to soften the bijectivity constraints,

be robust to sampling noise and to some outliers.

But OT remains little more than generalized sorting, or “nearest

neighbour projection” with a mass preservation constraint:

1. The quality of an OT matching is entirely driven by the matrix of

cost values C(xi, yj) = ‖xi − yj‖2 – the cleaner, the better.

2. Guaranteeing the preservation of topology is very costly – as

done for e.g. the diffeomorphic registration of brain images.
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Going further: better features and/or topology-aware models

OT in 2D/3D with a squared Euclidean cost on the (x, y, z)

coordinates is most relevant to e.g. fluid mechanics:

it models the displacement of non-viscous, incompressible fluids.

This simple model may be good enough to track small deformations

or ice motion between two neighboring frames in a “video”.

For large displacements however, we use domain-specific features

and representations that induce better cost matrices C(xi, yj).

For instance, represent each iceberg as a single point with coordinates

that correspond to geometric features such as the surface area,

perimeter and geographic location?

As OT specialists, our main target is to enable the development of

such “advanced” methods in the wider scientific community.
31



Scientific context, future works



Genuine team work

Alain Trouvé Thibault Séjourné F.-X. Vialard Gabriel Peyré

Benjamin Charlier Joan Glaunès Pierre Roussillon Pietro Gori

+ Freyr Sverrisson, Bruno Correia, Michael Bronstein, …
32



Promoting cross-field interactions

33



Promoting cross-field interactions
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The Python revolution

The emergence of an open andmodular ecosystem of scientific tools

has been a boon to the community.

Deep learning frameworks have put GPU computing and

automatic differentiation in the hands of every student.

(Incredible!)

These libraries have attracted significant backing from industry

players (Google, Facebook, …) and allowed the field

to boom over the last decade.

34



The Python revolution

Interacting with other researchers, doctors

and engineers has never been so easy.

But on the other hand, PyTorch and TensorFlow have also biased

the field towards a small set of well-supported operations:

convolutions and matrix-matrix products, mostly.

This design choice is not due to an intrinsic limitation of GPUs:

our hardware is more than capable of simulating large,

open 3D worlds in real-time!

As academic researchers, we must strive to keep other paths open.

Foster the development of a full range of methods,

from robust convex baselines

to expressive deep learning pipelines.

35



Our contribution to the community

KeOps and GeomLoss are:

+ Fast: ×10 -×1,000 speedup vs. naive GPU implementations.

+ Memory-efficient: O(N), not O(N2).

+ Versatile, with a transparent interface: freedom!

+ Powerful and well-documented: research-friendly.

− Slow with large feature vectors of dimension D > 100.

First half of 2021:

→ Approximation strategies (Nyström, etc.) in KeOps.

→ Wasserstein barycenters and grid images in GeomLoss.
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An ongoing research project

Roadmap for KeOps + GeomLoss:

2017–18 Proof of concept with conference papers, online codes.

Get first feedback from the community.

2019–20 Stable library with solid theorems, a well-documented API.

KeOps backends for high-level packages.

2021–22 Mature library with focused application papers, full tutorials.

Works out-of-the-box for students and engineers.

=⇒ GeomLoss as a backend for POT v1.0.

2022+ A standard toolbox, with genuine clinical applications?

That’s the target!
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Conclusion



Key points

• Symbolicmatrices are to geometricML what

sparsematrices are to graph processing:

−→ KeOps, x30 speed-up vs. PyTorch, TF and JAX.

−→ Useful in a wide range of settings.

• Optimal Transport = generalized sorting:

−→ Geometric gradients.

−→ Super-fast O(N log N) solvers.

• These tools open new paths for geometers and statisticians:

−→ GPUs are more versatile than you think.

−→ Ongoing work to provide fast GPU backends to researchers

– going beyond what Google and Facebook are ready to pay for.
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Conclusion

We believe that KeOps and GeomLoss will stimulate research on:

• Clusteringmethods: fast K-Means and EM iterations.

• Data representation: UMAP, fast KNN graphs with any metric.

• Kernelmethods: kernel matrices.

• Gaussian processes: covariance matrices.

• Geometric deep learning: point convolutions.

• Medical imaging: computational anatomy.

• Geometric statistics: going beyond Euclidean models.

• Natural language processing: transformer networks?

What do you think?
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Documentation and tutorials are available online

=⇒ www.kernel-operations.io ⇐=

www.jeanfeydy.com/geometric_data_analysis.pdf 40

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf


First setting: processing of point clouds

From the documentation of the

Point Cloud Library.

• ϕ is rigid or affine

• Occlusions

• Outliers



Second setting: medical imaging

From Marc Niethammer’s

Quicksilver slides.

• ϕ is a spline or a

diffeomorphism

• Ill-posed problem

• Some occlusions



Third setting: training a generative model

Wasserstein Auto-Encoders,

Tolstikhin et al., 2018.

• ϕ is a neural network

• Very weak regularization

• High-dimensional space

Which Loss function

should we use?
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Dual norms - link with the GANs literature

Loss(α, β) = max
f∈ B

〈α− β , f 〉,

look for θ∗ = argmin
θ

max
f∈ B

〈α(θ)− β , f 〉

• B = { ‖ f ‖∞ 6 1 } =⇒ Loss = TV norm:

• zero geometry

• too many test functions

• B = { ‖ f ‖22 + ‖∇f ‖22 + · · · 6 1 }=⇒ Loss = kernel norm:

• may saturate at infinity

• screening artifacts



Dual norms - link with the GANs literature

Loss(α, β) = max
f∈ B

〈α− β , f 〉,

look for θ∗ = argmin
θ

max
f∈ B

〈α(θ)− β , f 〉

• B = { ‖ f ‖∞ 6 1 } =⇒ Loss = TV norm:

• zero geometry

• too many test functions

• B = { ‖ f ‖22 + ‖∇f ‖22 + · · · 6 1 }=⇒ Loss = kernel norm:

• may saturate at infinity

• screening artifacts



Dual norms - link with the GANs literature

Loss(α, β) = max
f∈ B

〈α− β , f 〉,

look for θ∗ = argmin
θ

max
f∈ B

〈α(θ)− β , f 〉

• B = { ‖ f ‖∞ 6 1 } =⇒ Loss = TV norm:

• zero geometry

• too many test functions

• B = { ‖ f ‖22 + ‖∇f ‖22 + · · · 6 1 }=⇒ Loss = kernel norm:

• may saturate at infinity

• screening artifacts



Dual norms - link with the GANs literature

Loss(α, β) = max
f∈ B

〈α− β , f 〉,

look for θ∗ = argmin
θ

max
f∈ B

〈α(θ)− β , f 〉

• B = { f is 1-Lipschitz }=⇒ Loss = Wasserstein-1 (OT0):

• Sε is nearly as efficient as a closed formula

• relevant in low dimensions

• useless in (R512×512, ‖ · ‖2): the ground cost makes no sense

• B ' { f is 1-Lipschitz }
⋂
{ f is a CNN }

=⇒ Loss = Wasserstein GAN :

• use perceptually sensible test functions

• no simple formula: use gradient ascent

• can we provide relevant insights to the ML community?
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