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Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

2



HeKA : a translational research team for public health

Inserm

Hôpitaux

Inria

Universités
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Mymainmotivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
⟹ pyKeOps library for distance and kernel matrices, 500k+ downloads.

2. Scale up pharmacovigilance to the full French population:
⟹ survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
⟹ GeomLoss, truly scalable optimal transport in Python.
⟹ scikit-shapes, to be released soon.
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Today’s talk – assuming that you would enjoy some appliedmaths

1. The optimal transport problem.

2. Efficient discrete solvers.

3. Applications and open problems.
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Optimal transport?



Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P:

OT(A,B) = min
P∈ℝN×N

1
2N

N

∑
i, j =1

P𝑖,𝑗 ⋅ ‖ x𝑖 − y𝑗‖
2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 1⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 1 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]
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Practical use

Alternatively, we understand OT as:

• Nearest neighbor projection + incompressibility constraint.

• Fundamental example of linear optimization over the transport plan P𝑖,𝑗.

This theory induces twomain quantities:

• The transport plan P𝑖,𝑗 ≃ the optimal mapping 𝑥𝑖 ↦ 𝑦𝜎(𝑖).

• The “Wasserstein” distance √OT(A,B).
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OT induces a geometry-aware distance between probability distributions [PC18]

Gaussmap 𝒩 ∶ (𝑚, 𝜎) ∈ ℝ × ℝ⩾0 ↦ 𝒩(𝑚, 𝜎) ∈ ℙ(ℝ).

If the space of probability distributions ℙ(ℝ) is endowed with a given metric,
what is the “pull-back” geometry on the space of parameters (𝑚, 𝜎)?

Fisher-Rao (≃ relative entropy) on 𝒩(𝑚, 𝜎)
→ Hyperbolic Poincarémetric on (𝑚, 𝜎).

OT on 𝒩(𝑚, 𝜎)
→ Flat Euclideanmetric on (𝑚, 𝜎).
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How should we solve the OT problem?



Duality: central planning with NM variables ≃ outsourcing with N + M variables

OT(A,B) = min
𝜋

⟨ 𝜋 , C ⟩, with C(𝑥𝑖, 𝑦𝑗) = 1
𝑝‖𝑥𝑖 − 𝑦𝑗‖𝑝 ⟶ Assignment

s.t. 𝜋 ⩾ 0, 𝜋 1 = A, 𝜋T1 = B

∑𝑖,𝑗 𝜋𝑖,𝑗 C(𝑥𝑖, 𝑦𝑗)

∑𝑖 A𝑖𝑓𝑖 + ∑𝑗 B𝑗𝑔𝑗

=

max
𝑓 , 𝑔

⟨ A , 𝑓 ⟩ + ⟨B , 𝑔 ⟩ ⟶ FedEx

s.t. 𝑓(𝑥𝑖) + 𝑔(𝑦𝑗) ⩽ C(𝑥𝑖, 𝑦𝑗),
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Being too greedy... doesn’t work!
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The auction algorithm: take it easy with a slackness 𝜀 > 0
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The Sinkhorn algorithm: use a softmin, get a well-defined optimum
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The symmetric Sinkhorn algorithm: stay close to the diagonal if A ≃ B
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Remark 1: a streamlined algorithm

One key operation – the soft,weighted distance transform:

∀𝑖 ∈ [1,N], 𝑓(𝑥𝑖) ← min
𝑦∼𝛽

[C(𝑥𝑖, 𝑦) − 𝑔(𝑦)] = −𝜀 log
M

∑
𝑗=1

𝛽𝑗 exp 1
𝜀 [𝑔𝑗 − C(𝑥𝑖, 𝑦𝑗)] .

Similar to the chamfer distance transform, convolution with a Gaussian kernel…
Fast implementations with pyKeOps:

• If C(𝑥𝑖, 𝑦𝑗) is a closed formula: bruteforce scales to N,M ≃ 100k in 10ms on a GPU.

• If A and B have a low-dimensional support:
use a clustering and truncation strategy to get a x10 speed-up.

• If A and B are supported on a 2D or 3D grid and C(𝑥𝑖, 𝑦𝑗) = 1
2‖𝑥𝑖 − 𝑦𝑗‖2:

use a separable distance transform to get a second x10 speed-up.
(N.B.: FFTs run into numerical accuracy issues.) 15



Remark 2: annealing works!

The Auction/Sinkhorn algorithms:

• Improve the dual cost by at least 𝜀 at each (early) step.
• Reach an 𝜀-optimal solution with (maxC) / 𝜀 steps.

Simple heuristic: run the optimization with decreasing values of 𝜀.

𝜀-scaling
= simulated annealing
= multiscale strategy
= divide and conquer
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Remark 3: the curse of dimensionality

assignments π

cost wrt. C(x,y)

π

OT(A,B)

+ε

In low dimension:
• ‖𝑥 − 𝑦‖ takes large and small values.
• The OT objective is peakywrt. 𝜋.
• 𝜀-optimal solutions are useful.
• OT(discrete samples) ≃
OT(underlying distributions)

assignments π

cost wrt. C(x,y)

π

OT(A,B)

+ε

In high dimension:
• ‖𝑥 − 𝑦‖ gets closer to a constant.
• The OT objective is flatwrt. 𝜋.
• 𝜀-optimal solutions are random.
• OT(discrete samples) ≠
OT(underlying distributions)
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To recap 80+ years of work…

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.
• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
• [Cut13]: Start of the GPU era.
• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ GeneralizedQuickSort algorithm.
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Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

OT plan in 2D.
19



Visualizing 𝐹, 𝐺 and the Brenier map ∇𝐹(𝑥𝑖) = − 1
𝛼𝑖

𝜕𝑥𝑖
OT(𝛼, 𝛽)

Iteration 0, blur 𝜎 =
√

𝜀 = 20
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Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on amodern gaming GPU:

pip install
geomloss

+
modern GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms
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Applications



A typical example in anatomy: lung registration “Exhale – Inhale”

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm). 23



State-of-the-art networks – and their limitations

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Target

L0

L1

L2

L3

L4

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Source

L0

L1

L2

L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

Multi-scale convolutional
point neural network.

Point neural nets, in practice:
• Compute descriptors at all scales.
• Match them using geometric layers.
• Train on synthetic deformations.

Strengths and weaknesses:
• Good at pairing branches.
• Hard to train to high accuracy.

⟹ Complementary to OT.
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Three-steps registration

xi
yj

θ

θ

1.    Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3.    Spline-RobOT post-processing. Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic 

pairs.

This pragmaticmethod:

• Is easy to train on synthetic data.
• Scales up to high-resolution: 100k points in 1s.
• Excellent results: KITTI (outdoors scans) and DirLab (lungs).

Accurate point cloud registration with robust optimal transport,
Shen, Feydy et al., NeurIPS 2021. 25



Three-steps registration
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Wasserstein barycenters [AC11]

Barycenter A∗ = arg min
A

4
∑
𝑖=1

𝜆𝑖 Loss( A , B𝑖 ) .

Euclidean barycenters.
Loss(A,B) = ‖A − B‖2

𝐿2

Wasserstein barycenters.
Loss(A,B) = OT(A,B) 27



Wasserstein barycenters

From a computational perspective:

• The problem is convex (easy) wrt. the weights.
• The support of the barycenter lies in the convex hull of the input distributions.

The curse of dimensionality hits hard:

• In high dimension, identifying the support can become NP-hard.
• In dimensions 2 and 3, we can just use a grid and recover super fast algorithms.
Computing OT distances and barycenters between density maps is a solved
problem.

⟹ We can now easily domanifold learning with e.g. UMAP
in Wasserstein spaces of 2D and 3D distributions.

28



An example this afternoon: Anna Song’s presentation on 3D shape textures
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Conclusion



Genuine teamwork

Benjamin Charlier Joan Glaunès Thibault Séjourné F.-X. Vialard Gabriel Peyré

Alain Trouvé Marc Niethammer Shen Zhengyang Olga Mula Hieu Do
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Key points

• Optimal Transport = generalized sorting :
⟶ Super-fast solvers on simple domains (esp. 2D/3D spaces).
⟶ Simple registration for shapes that are close to each other.
⟶ Fundamental tool at the intersection of geometry and statistics.
⟶ Can we extend recent computational advances to topology-awaremetrics?

• GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
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Documentation and tutorials are available online

⟹ www.kernel-operations.io ⟸

www.jeanfeydy.com/geometric_data_analysis.pdf 32

www.kernel-operations.io
www.jeanfeydy.com/geometric_data_analysis.pdf
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