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Two main points today :

- Optimal Transport as a data attachment term.
- theano as a development tool.
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Procustes Analysis



Position, Scale and Orientation
=

Figure 1: Matching the blue wing on the red one. (Wikipedia)



From images to labeled point clouds

Figure 2: Anatomical landmarks on a tuna fish.
From A morphometric approach for the analysis of body shape in
bluefin tuna: preliminary results, Addis and al.



Mathematical formulation

Let X, Y € RMXD pe two labeled point clouds.

Let S, denote the rigid-body transformation of parameters
7 (translation) and v (rotation + scaling).

Then, try to find

To, Vo = arg rDiUn H ST,U(X) - ||§ (1)

M
— ; ym _ M2
= argmin Z|v XM —ym|e. (2)

m=1



Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

A

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

(x1,91)
|

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

(5 5)

N

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

NPk

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Typical run on polygons

Y

L

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)



Pros and cons of Procustes analysis

Pros :

- Simple and robust
- Parameters make sense

- Miracle results for populations of triangles (Kendall, 1984)
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Pros and cons of Procustes analysis

Pros :

- Simple and robust
- Parameters make sense

- Miracle results for populations of triangles (Kendall, 1984)
Cons:

- Max. number of 2 - D explicative parameters

- Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.



Optimal Transport




Image matching as a mass-carrying problem
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Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.
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Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ..., ), (1, ..., ) the associated (integer) weights,
suchthat Y puj=M=>" v,
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Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ..., ), (1, ..., ) the associated (integer) weights,
suchthat Y puj=M=>" v,

Then, find a collection of paths 4™ : t € [0,1] = ~{" minimizing

M 1
£0) =3 [ e 3)
m=171=0
under the constraint that for all indices i and j,
#{m e[1,M], ¢ =X’} = Wi, (4)

#{m efi,M], " :y/} = . (5)

10



Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ..., ), (1, ..., ) the associated (integer) weights,
suchthat Y puj=M=>" v,

Then, find a collection of paths 4™ : t € [0,1] = ~{" minimizing

M 1
£0) =3 [ e 3)
m=1 t=0
under the constraint that for all indices i and j,
#{m e[1,M], ¢ =X’} = Wi, (4)
#{m e,Mm], " =y’} = v (5)

~ is the optimal transport path between the two measures

I J

Y § :
21 :uf(s)(f = U —_— VUV = - I/jéyj. (6) 10
1= =



Static formulation : permutation

If we relabel the unit masses (x',...,x™) and (y',...,y™),
find a permutation o :[1, M] — [1, M] minimizing

) = 3y "

o is an optimal labeling.

"



Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ¢;; =[x’ — nyZ, find an optimal transport plan

M= (i) j)e 1,1 Minimizing

cor(r) = Z'Yi,j Cij (8)
i
under the constraints :

Vijg, %y 20, Vi, Y yig=wm Vi Y vj=vy. )
j i

12



Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ¢;; =[x’ — nyZ, find an optimal transport plan

M= (i) j)e 1,1 Minimizing

COr(r) = > wijci (8)
i

under the constraints :

Vi, vj=0, Vi, E Yij = di» V), E vij=v. (9)
j i
This is textbook linear programming.

12



Entropic regularization

Under marginal constraints ' = g, 1T = v, minimize

C?ry(r) = Z%’j Cij — EH(r) (10)
with entropy H(I Z,,%J log(i;) —

Figure 5: Image borrowed to Gabriel Peyré.
13



The regularized transport problem

Schrodinger problem:
How much do e-Brownian bridges get mixed together ?

14



Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

[ = diag(a) - K - diag(b) = (a;bjk;)), (11)
with

ki = e Cile, a

WV
o
o
WV
o
S

i7j
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Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

[ = diag(a) - K - diag(b) = (a;bjk;)), (11)
with

ki = e Cile, a

WV
o
o
WV
o
S

i7j

Sinkhorn theorem = this problem is tractable.

15



The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),
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The Sinkhorn algorithm

We want :

diag(a) - K - diag(b) - 1
e. diag(a) - Kb
l.e. Kb

pand v’ =1"-diag(a) - K - diag(b),
and v =diag(b)-K'a,

=K'a,

ol ¥

and

IR
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The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b
_ M _ v
e a= B and b Ko

Sinkhorn algorithm :

1. startwitha=1,b =1,



The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b

_ K -7

e a= B and b Ko
Sinkhorn algorithm :

1. startwitha=1,b =1,
2. Apply repeatedly
a« b« 2. (13)

Kb’ KTa



Implementation details

We use

a ¢ b « o (14)

- Very efficient scheme for squared distances on a grid.
- Otherwise, we work in the log-domain :

u = ¢ log(a) and v=clog(b) (15)



Implementation details

We use
ol v
a ¢ b « s (14)
- Very efficient scheme for squared distances on a grid.
- Otherwise, we work in the log-domain :
u = ¢ log(a) and v=clog(b) (15)

so that the iterations read

U< U+e log(u) — ¢ log (Z exp <LI,—}-\2C,}>) (16)

J

V<« V+e log(v) — e log (Z exp <u,+\z—c,j>> . (17)

I



The Sinkhorn algorithm : an efficient iterative solver
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Figure 6:

Measures to match.



The Sinkhorn algorithm : an efficient iterative solver
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Figure 6: Monge transport, v/ = 0.



The Sinkhorn algorithm : an efficient iterative solver
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Figure 6: Diffuse transport, /e = .01




The Sinkhorn algorithm : an efficient iterative solver
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Figure 6: Diffuse transport, /¢ = .03.




Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings

- Light-speed numerical solvers at hand (Cuturi, 2013)
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Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings
- Light-speed numerical solvers at hand (Cuturi, 2013)

cons:

- Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

19



Can we build a rich and practical model for
smooth deformations ?



The diffeomorphic framework




Spoiler alert : yes indeed, but it won't be convex anymore
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Figure 7: Source.
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Figure 7: Target.
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Spoiler alert : yes indeed, but it won't be convex anymore
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Figure 7: OT matching.
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Spoiler alert : yes indeed, but it won't be convex anymore
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Figure 7: LDDMM matching.

20



The diffeomorphic framework

Shooting on spaces of diffeomorphisms



Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 8: The donut-shaped torus.
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Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y.
Simple solution : Try to find a sensible diffeomorphic
trajectory ¢; such that

wo = ldga and pr1- XY, (18)

22



Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y.
Simple solution : Try to find a sensible diffeomorphic
trajectory ¢; such that

wo = ldga and pr1- XY, (18)

¢t = V¢ is a vector field on the ambient space RY.
Two main models :

Log-demons ¢; is a one-parameter subgroup — v; is constant.
LDDMM ¢ is a geodesic on the group of diffeomorphisms
seen as a manifold endowed with a right-invariant
metric given by a euclidean norm |Jv¢||,,
— (1, vt) Obeys a geodesic equation.

22



Sometimes, we can compute geodesics explicitly...

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 9: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.

23


www.pitt.edu/~jdnorton/

But this is not the case in general

Figure 10: Geodesics on the Duhem’s bull, embedded in R>.
Taken from www.chaos-math.org.

2%


www.chaos-math.org

The exponential map

In both models, we get an exponential map :
Log-demons Fast exponentiation of (Id + 5% )>°,

Exp : v € V = ¢ € Diff(RY). (19)

25



The exponential map

In both models, we get an exponential map :
Log-demons Fast exponentiation of (Id + 5% )>°,

Exp : v € V = ¢ € Diff(RY). (19)

LDDMM Euler-like integration of the Hamiltonian geodesic
equations:

, (20)
Pt+o1 = Pt — 0.1-04(pt, Kqpt)(qt)

so that

{Qt+0.1 = gt + 0.7-Kgpt

Expg, : Po € TgM = g1 € M. (21)

25



It works !

Some geodesics on the 3D Torus

/.

(a) 2D parametrization. (b) Embedded in R3.

.
.

Figure 11: Geodesics on the donut-shaped torus.
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Influence of the kernel width, o = .35
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(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.
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Influence of the kernel width, o = .50
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(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o = .50
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Influence of the kernel width, o0 = 1.
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Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,
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Influence of the kernel width, o0 = 1.
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Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

- 0T (6=0)—Z* 5 G, —Z* (6 = +00) Translations

- Deformations computed through geodesic shooting
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Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

- 0T (6=0)—Z* 5 G, —Z* (6 = +00) Translations

- Deformations computed through geodesic shooting
The (basic) framework relies on three pillars :

- Hamilton’s theorem (g — Kg)
- The current availability of GPUs  (parallelism)

- The Reduction Principle ((qt, pt) +— 1)
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The diffeomorphic framework

An iterative matching algorithm



Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".
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Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as:

le() = YIls = llu—vlis = [1Bs % (n—v)llzgoy . (22)
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Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as:

lo() = Ylis = lu = vlis = I1Bs* (1 = )llgoy.  (22)

Ideally, we are looking for

p(Y = G- X) = argmin|p(X) — Y| (23)
PEGy

31



Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo, ) < C < 400
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Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo, ) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - oK, 0(X)) + yar -lo(X) = VIZ.  (24)
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Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo, ) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - oK, 0(X)) + yar -lo(X) = VIZ.  (24)

That is, minimize over the shooting momentum py :

Cost(Po) = Treg - PoKaoPo + 7att -|lan — Y| 12 (25)
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Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo, ) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - dR(X, (X)) + yar-ll(X) = Y[l (24)

That is, minimize over the shooting momentum py :

Cost(Po) = Treg - PoKaoPo + 7att -|lan — Y| 12 (25)

If Yreg << 7att, g1 Should be good enough.
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Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7ar : the geodesic length di(X., (X)) is much less
constrained than the dissimilarity ||¢(X) — YH? 33
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Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7att : the geodesic length d2(X, (X)) is much less
constrained than the dissimilarity || (X) — YH? 34
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Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7att : the geodesic length d2(X, (X)) is much less
constrained than the dissimilarity || (X) — YH? 34



The diffeomorphic framework

Let’s read some code



The theano library

1 # Import the relevant tools

2 import time # to measure performance

3 import numpy as np # standard array library

4 import theano # Autodiff & symbolic calculus library :

5 import theano.tensor as T # - mathematical tools;

6 from theano import config, printing # - printing of the Sinkhorn error.
theano:

- Isa python library
- Symbolic computations = efficient CPU/GPU binaries
- Auto-differentiates expressions
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The theano library

1 # Import the relevant tools

2 import time # to measure performance

3 import numpy as np # standard array library

4 import theano # Autodiff & symbolic calculus library :

5 import theano.tensor as T # - mathematical tools;

6 from theano import config, printing # - printing of the Sinkhorn error.
theano:

- Isa python library
- Symbolic computations = efficient CPU/GPU binaries
- Auto-differentiates expressions

It changed my life... Let's see why.
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The Hamiltonian

230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252

254

# Part 1 : kinetic energy on the phase space (Hamiltonian) =========================

def

def

def

def

_squared_distances(x, y) :

"Returns the matrix of [x_i-y_jl"2.
x_col = x.dimshuffle(o, 'x', 1)
y_lin = y.dimshuffle('x', 0, 1)
return T.sum( (x_col - y_lin)*%2 , 2 )

_k(x, y, s) :
"Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_jl"2)"{1/4}, with a heavy tail."
sq = _squared_distances(x, y) / (s*%2)

return T.pow( 1. / ( 1. + sq ), .25 )

_cross_kernels(q, x, s) :

"Returns the full k-correlation matrices between two point clouds q and x."
K_aq = _k(q, g, s)

K_gx = _k(q, x, s)

K_xx = _k(x, x, s)

return (K_qq, K_gx, K_xx)

_Hap(q, p, sigma) :

"The hamiltonian, or kinetic energy of the shape q with momenta p."
pKap = _k(q, q, sigma) * (p.dot(p.T))# Use a simple isotropic kernel
return .5 = T.sum(pKqp) # H(G,p) = 3 - i k(X5 %)P;-pj
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Geodesic shooting

261

# Part 2 : Geodesic shooting

# The partial derivatives of the Hamiltonian are automatically computed !

def

def

def

def

_dq_Hqp(q,p,sigma) :
return T.grad(_Hqp(q,p,sigma), q)
_dp_Hqp(q,p,sigma) :
return T.grad(_Hqp(q,p,sigma), p)

_hamiltonian_step(q,p, sigma) :
"Simplistic euler scheme step with dt = .1.
return [q + .1 * _dp_Hqp(q,p,sigma) ,

p - .1« _dq_Hagp(q,p,sigma) ]

_HamiltonianShooting(q, p, sigma) :
"Shoots to time 1 a k-geodesic starting (at time 0) from g with momentum p."
# We use the "scan" theano routine, which can be understood as a "for" loop
result, updates = theano.scan(fn = _hamiltonian_step,
outputs_info = [q,p],
non_sequences = sigma,
n_steps = 10 ) # hardcode the "dt = .1"
# We do not store the intermediate results,
# and only return the final state + momentum :
final_result = [result[0][-1], result[1][-1]]
return final_result
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OT fidelity, part 1

298 # Part 3 : Data attachment
299
300 def _ot_matching(ql_x, ql_mu, xt_x, xt_mu, radius) :

301 e

302 Given two measures gl and xt represented by locations/weights arrays,

303 outputs an optimal transport fidelity term and the transport plan.

304 e

305 # The Sinkhorn algorithm takes as input three Theano variables

306 ¢ = _squared_distances(ql_x, xt_x) # Wasserstein cost function

307 mu = ql_mu ; nu = xt_mu

308

309 # Parameters of the Sinkhorn algorithm.

310 epsilon = (.02)*%2 # regularization parameter

311 rho = (.5) *x2 # unbalanced transport (Lenaic Chizat)
312 niter = 10000 # max niter in the sinkhorn loop

313 tau = -.8 # Nesterov-like acceleration

314 lam = rho / (rho + epsilon) # Update exponent

B # ELementary OpPerations v uiueeeeneeneeeeneeneeeeneeneneaneneensnsensosensnens
316 def ave(u,ul) :

317 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
318 return tau * u + (1-tau) * ul

319 def M(u,v)

320 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"

321 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon

322 1se = lambda A : T.log(T.sum( T.exp(A), axis=1 ) + le-6) # prevents NaN
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OT fidelity, part 2

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

# OACTUATL SINKhOTN T00P & vttt ettt ettt ittt ettt en e eeeeeannenesnennenennnnns
# Iteration step
def sinkhorn_step(u, v, foo) :

ul=u # useful to check the update

u = ave( u, lam = ( epsilon * ( T.log(mu) - lse(M(u,v)) ) +u ) )
v = ave( v, lam = ( epsilon * ( T.log(nu) - lse(M(u,v).T) ) + v ) )
err = T.sum(abs(u - ul))
# "break" the loop if error < tol
return (u,v,err), theano.scan_module.until(err < le-4)
# Scan = "For loop"
err® = np.arange(1, dtype=config.floatX)[0]
result, updates = theano.scan( fn = sinkhorn_step, # Iterated routine
outputs_info = [(0.*mu), (0.%nu), err0®], # Start
n_steps = niter # Number of iters
)
U, V = result[0][-1], result[1][-1] # We only keep the final dual variables
Gamma = T.exp( M(U,V) ) # Transport plan g = diag(a)*Kxdiag(b)
cost = T.sum( Gamma * ¢ ) # Simplistic cost, chosen for readability
if True : # Shameful hack to prevent the pruning of the error-printing node...
print_err_shape = printing.Print('error : ', attrs=['shape'l)
errors = print_err_shape(result[2])
print_err = printing.Print('error : ') ; err_fin = print_err(errors[-1])

cost += .00000001 * err_fin
return [cost, Gamma]
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Kernel fidelity, Data attachment term

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

def

def

_kernel_matching(ql_x, ql_mu, xt_x, xt_mu, radius)
Given two measures gl and xt represented by locations/weights arrays,
outputs a kernel-fidelity term and an empty 'info' array.
K_qq, K_gx, K_xx = _cross_kernels(ql_x, xt_x, radius)
ql_mu = ql_mu.dimshuffle(0,'x"') # column
xt_mu = xt_mu.dimshuffle(0,'x"') # column
cost = .5 » ( T.sum(K_qq * ql_mu.dot(ql_mu.T)) \
+ T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
-2+T.sum(K_gx * gl_mu.dot(xt_mu.T)) )

[...] # error-tracking stuff
return [cost , ... ]

_data_attachment(ql_measure, xt_measure, radius) :
"Given two measures and a radius, returns a cost (Theano symbolic variable)."
if radius == : # Convenient way to allow the choice of a method
return _ot_matching(ql_measure[@], ql_measure[1],
xt_measure[0], xt_measure[1],
radius)
else
return _kernel_matching(ql_measure[0], ql_measure[1],
xt_measure[0], xt_measure[1],
radius)
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ual cost function

383 # Part 4 : Cost function and derivatives

384

385

386 def _cost( q,p, xt_measure, connec, params )

387 e

388 Returns a total cost, sum of a small regularization term and the data attachment.
389 .. math

390

391 C(q_0, p_6) = .1 * H(qoO,pd) + 1 * A(g_1, x_t)

392

393 Needless to say, the weights can be tuned according to the signal-to-noise ratio.
394 e

395 s,r = params # Deformation scale, Attachment scale

396 ql = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q@ to ql

397 # Convert the set of vertices 'ql' into a measure.

398 ql_measure = Curve._vertices_to_measure( g1, connec )

399 attach_info = _data_attachment( gl_measure, xt_measure, 1 )

400 return [ .1x _Hgp(q, p, s) + 1.+ attach_info[0] , attach_info[1] ] # [cost, info]
401

402

403 # The discrete backward scheme is automatically computed
404 def _dcost_p( q,p, xt_measure, connec, params ) :

405 "The gradients of C wrt. p_0 is automatically computed."
406 return T.grad( _cost(q,p, xt_measure, connec, params)[0] , p)
407
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Minimization script, pa

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445

def perform_matching( Q0, Xt, params, scale_momentum = 1, scale_attach = 1)

""" performs a matching from the source Q0 to the target Xt,
returns the optimal momentum PO.

(Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure

g0 = QO0.points ; p@ = np.zeros(g@.shape) # Null initialization for the momentum

o Y0 R L
print('Compiling the energy functional.')

timel = time.time()

# Cost is a function of 6 parameters

# The source 'q', the starting momentum 'p'

# the target points 'xt_x', the target weights 'xt_mu',

# the deformation scale 'sigma_def', the attachment scale 'sigma_att'.

q, p, Xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types

# Compilation. Depending on settings specified in the ~/.theanorc file or

# given at execution time, this will produce CPU or GPU code under the hood.

Cost = theano.function([q,p, xt_x,xt_mu ],
[ _cost( q,p, (xt_x,xt_mu), QO.connectivity, params )[0],
_dcost_p( q,p, (xt_x,xt_mu), QO.connectivity, params ) )

_cost( q,p, (xt_x,xt_mu), QO.connectivity, params )[1] 1,

allow_input_downcast=True)

time2 = time.time()

print('Compiled in : ', '{0:.2f}'.format(time2 - timel), 's"')
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Minimization script, part 2

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

469

& Digplay PEE=COMUEINEG scos=sssssscssssssocssssssessssssososoossosssoossooooooo0
connec = QO0.connectivity ; g0 = QO.points ;
g0,cgrid = GridData() ; GO = Curve(god, cgrid )
# Given q0, p0 and grid points grid® , outputs (ql,pl,gridl) after the flow
# of the geodesic equations from t=0 to t=1
ShootingVisualization = VisualizationRoutine(q®, params)
# L-BFGS minimization =—--===--=—=——-—--—--- oo
from scipy.optimize import minimize
def matching_problem(p0_vec) :
"Energy minimized in the variable 'p@'."
po = pO_vec.reshape(q0.shape)
[c, dp_c, info] = Cost(q0, pO, Xt_x, Xt_mu)
matching_problem.Info = info
if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc)
matching_problem.bestc = c
ql,pl,81 = ShootingVisualization(q®, pO, np.array(g0e))
Ql = Curve(ql, connec) ; Gl = Curve(gl, cgrid )
DisplayShoot( Q0, GO, p0, Q1, G1, Xt, info,
matching_problem.it, scale_momentum, scale_attach)
print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
matching_problem.it += 1
# The fortran routines used by scipy.optimize expect float64 vectors
# instead of gpu-friendly float32 matrices: we need a slight conversion
return (c, dp_c.ravel().astype('float64'))
matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None
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Minimization script, part 3

473
474
475
476
477
478
479

481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497

def

timel = time.time()

res = minimize( matching_problem,
p0.ravel(),
method = 'L-BFGS-B',
jac = True,
options = dict(

function to minimize

starting estimate

an order 2 method

matching_problems returns the gradient

maxiter = 1000, # max number of iterations
ftol = .000001,# Don't bother fitting to float precision
maxcor = 10 # Prev. grads. used to approx. the Hessian

))

time2 = time.time()

p0 = res.x.reshape(q0.shape)

print('Convergence success : ', res.success, ', status = ', res.status)
print('Optimization message : ', res.message.decode('UTF-8"'))
print('Final cost after ', res.nit, ' iterations : ', res.fun)
print('Elapsed time after ', res.nit, ' iterations : ',

'{0:.2f}'.format(time2 - timel), 's')
return p@, matching_problem.Info

matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1)
Q0 = Curve.from_file(source_file) # Load source...

Xt = Curve.from_file(target_file) # and target.

# Compute the optimal shooting momentum :

p0, info = perform_matching( Q@, Xt, params, scale_mom, scale_att)
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The diffeomorphic framework

Results



Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 0.
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Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 3.
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Typical run with OT fidelity
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Figure 17: Iteration 4.
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Typical run with OT fidelity
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(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 5.
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Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 6.
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Typical run with OT fidelity
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Figure 17: Iteration 7.
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Typical run with OT fidelity
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(a) Momentum py.

Figure 17: Iteration 8.

(b) Shooted model g,.
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Typical run with OT fidelity

os / o8
§

e
‘\\\\\\\\\\qw_\f_\” I
g‘:\ ! o~

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 9.
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Typical run with OT fidelity
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Figure 17: Iteration 10.
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Typical run with OT fidelity
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(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 11.
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Typical run with OT fidelity

#
o8 :! 08
us \\\\Wr u /
\\\\\\ (1o
(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 12.
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Typical run with OT fidelity
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(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 13.
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Typical run with OT fidelity
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(a) Momentum py.
Figure 17: Iteration 14.

(b) Shooted model g,
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Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 15.
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Typical run with OT fidelity
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Figure 17: Iteration 16.
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Typical run with OT fidelity
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Figure 17: Iteration 17.
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Typical run with OT fidelity
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Figure 17: Iteration 18.
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Typical run with OT fidelity
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Figure 17: Iteration 19.

45



Typical run with OT fidelity
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Figure 17: Iteration 20.
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Typical run with OT fidelity
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Figure 17: Iteration 21.
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Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 22.
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Typical run with OT fidelity
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Figure 17: Iteration 23.
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Typical run with OT fidelity
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Figure 17: Iteration 24.
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Typical run with OT fidelity
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Figure 17: Iteration 25.
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Typical run with OT fidelity
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Figure 17: Iteration 26.
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Typical run with OT fidelity
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Figure 17: Iteration 41.
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Figure 17: Iteration 42.
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Figure 17: Iteration 69.
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Figure 17: Iteration 74.
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Figure 17: Iteration 75.
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(a) Momentum py.

Figure 17: Iteration 79.
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Figure 17: Iteration 86.
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(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 90.
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Figure 18: Iteration 0.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 3.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 4.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 5.

46



Typical run with kernel fidelity

PEa )

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 6.
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Figure 18: Iteration 7.
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Figure 18: Iteration 8.
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Figure 18: Iteration 9.

46



Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.
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46



Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 11.
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Figure 18: Iteration 12.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 13.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 14.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 15.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 16.

46



Typical run with kernel fidelity

1
f'?ff,-
&,ﬂ
~ f*"um,.-/ ;

”f/mi“i“'ﬁ '

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 17.

46



Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 19.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 20.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 21.
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Figure 18: Iteration 22.
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Figure 18: Iteration 23.
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Figure 18: Iteration 24.
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Figure 18: Iteration 25.
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Figure 18: Iteration 27.
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(a) Momentum py. (b) Shooted model g;.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 30.
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Figure 18: Iteration 31.
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Figure 18: Iteration 32.
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Figure 18: Iteration 33.
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Figure 18: Iteration 34.

46



Typical run with kernel fidelity

//////é = \

- ,,,,,/: ] -
"7/,///;‘0«* : & |\ 4’,//@
5;. o R/’T@
P

R S

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 36.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 37.
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Figure 18: Iteration 39.
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Figure 18: Iteration 40.
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Figure 18: Iteration 41.
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Figure 18: Iteration 42.
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Figure 18: Iteration 44,
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Figure 18: Iteration 45.
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Figure 18: Iteration 46.
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Figure 18: Iteration 47.
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Figure 18: Iteration 50.
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Figure 18: Iteration 70.
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Figure 18: Iteration 90.
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(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 130.
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Figure 18: Iteration 150.
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Figure 18: Iteration 170.
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Figure 18: Iteration 200.
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Figure 18: Iteration 240.
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Influence of the kernel width
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Figure 19: Final matching, o = .01.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .02.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .03.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . Q4.
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(b) Shooted model g,.

Figure 19: Final matching, o = . 05.
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(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = . Q6.
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(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = .07.
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(b) Shooted model g,.

Figure 19: Final matching, o = .08.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .09.
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Figure 19: Final matching, o = . 1.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .11.
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Figure 19: Final matching, o = .12.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .13.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 14.
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(b) Shooted model g,.
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Figure 19: Final matching, o = . 15.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 16.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .17.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .18.
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(a) Momentum py.

Figure 19: Final matching, o = .19.
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Figure 19: Final matching, o = . 2.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .21.
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Figure 19: Final matching, o = .22.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .23.
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Figure 19: Final matching, o = .24.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .25.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .26.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .27.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .28.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .29.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 3.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .31.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .32.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .33.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .34.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 35.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 36.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .37.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .38.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .39.
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Figure 19: Final matching, o = . 4.
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(b) Shooted model g,.

Figure 19: Final matching, o = . 41.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 42.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 43.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 44.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 45.

47



Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 46.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 47.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 48.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 49.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 5.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .51.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .52.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .53.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .54.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .55.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 56.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .57.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .58.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .59.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 6.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .61.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .62.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .63.

47



Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 64.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 65.
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(a) Momentum py. (b) Shooted model g,.
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Figure 19: Final matching, o = . 66.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .67.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .68.

47



Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .69.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .70.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .71.
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Figure 19: Final matching, o = .72.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .73.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 74.
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Figure 19: Final matching, o = . 75.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 76.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .77.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .78.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .79.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 8.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 81.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 82.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 83.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 84.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 85.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 86.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 87.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 88.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 89.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 9.
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Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .91.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .92.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .93.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .94.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .95.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 96.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .97.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .98.

47



Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .99.
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(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = 1.0.
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Conclusion




OT as a fidelity term

Pros:

- Principled globalization trick.

- Versatile : any distance on any feature space will do.
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- Only affordable for large e diffusion values.

- Can still be tricked in symmetric situations.

48



OT as a fidelity term

Pros:

- Principled globalization trick.

- Versatile : any distance on any feature space will do.
Cons:

- Only affordable for large e diffusion values.

- Can still be tricked in symmetric situations.
Coming soon (say, end of 2017) :
- Implementation on 3D dense images.

- Investigate the continuum “RKHS — OT".
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theano for image registration

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative : safer to use with BFGS and line searchs.
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- Exact derivative : safer to use with BFGS and line searchs.

cons:

- Current bottleneck : memory overflows.
- Using BCH formula will require some hack
(OpFromGraph...).

49



theano for image registration

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative : safer to use with BFGS and line searchs.

cons:

- Current bottleneck : memory overflows.
- Using BCH formula will require some hack
(OpFromGraph...).

Stay tuned :

- RAM-GPU memory links coming soon ?
- Libraries are moving fast : check TensorFlow, etc.
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Questions?
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