Optimal Transport and Theano for
diffeomorphic registration

A presentation to the Asclepios Inria team.

Jean Feydy
June 27,2017

Ecoles Normales Supérieures de Paris et Paris-Saclay

Some information

Jean Feydy (sept. 2016 - aug. 2019) :

- PhD student under the supervision of Alain Trouveé.
- Caiman at the ENS.

Some information

Jean Feydy (sept. 2016 - aug. 2019) :

- PhD student under the supervision of Alain Trouveé.
- Caiman at the ENS.

Two main points today :

- Optimal Transport as a data attachment term.
- theano as a development tool.

Supplementary material

Further references available online:
www.math.ens.fr/~feydy/

Research and Teaching tabs, look for :

- Optimal Transport for Diffeomorphic Matching,
MICCAI 2017,). Feydy, B. Charlier, F-X. Vialard and G. Peyré.

- Culture Mathematique, chap. 9-10.

- Introduction d la Geométrie Riemannienne par ['Etude des
Espaces de Formes.

www.math.ens.fr/~feydy/

Table of contents

1. Procustes Analysis
2. Optimal Transport

3. The diffeomorphic framework
Shooting on spaces of diffeomorphisms
An iterative matching algorithm
Let's read some code

Results

4. Conclusion

Procustes Analysis

Position, Scale and Orientation
=

Figure 1: Matching the blue wing on the red one. (Wikipedia)

From images to labeled point clouds

Figure 2: Anatomical landmarks on a tuna fish.
From A morphometric approach for the analysis of body shape in
bluefin tuna: preliminary results, Addis and al.

Mathematical formulation

Let X, Y € RMXD pe two labeled point clouds.

Let S, denote the rigid-body transformation of parameters
7 (translation) and v (rotation + scaling).

Then, try to find

To, Vo = arg rDiUn H ST,U(X) - ||§ (1)

M
— ; ym _ M2
= argmin Z|v XM —ym|e. (2)

m=1

Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

A

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

(x1,91)
|

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

(5 5)

N

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

NPk

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Typical run on polygons

Y

L

Figure 3: Matching a kitesurf on a square. (Wikipedia, Linschn)

Pros and cons of Procustes analysis

Pros :

- Simple and robust
- Parameters make sense

- Miracle results for populations of triangles (Kendall, 1984)

Pros and cons of Procustes analysis

Pros :

- Simple and robust
- Parameters make sense

- Miracle results for populations of triangles (Kendall, 1984)
Cons:

- Max. number of 2 - D explicative parameters

- Unable to capture subtle shape deformations

Pros and cons of Procustes analysis

Pros :

- Simple and robust
- Parameters make sense

- Miracle results for populations of triangles (Kendall, 1984)
Cons:

- Max. number of 2 - D explicative parameters

- Unable to capture subtle shape deformations

This model is a standard pre-processing tool.
However, it is too limited to allow in-detail analysis.

Optimal Transport

Image matching as a mass-carrying problem

08
06 / N\ \ I\
\
04 J \ L ()/
p Y N Y.

0.2

0.0
0.0 0.2 04 0.6 08 10

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

Image matching as a mass-carrying pro

10
- T
AN
N
08 \ \
\, \A
~ \
— N 7N {
7 ~ \ 7N\
/ \ \ it \
/ \ A [
0.6 7 ™ 3 4 b
- 4 AY j Vool
l/ / ! | I N
;] /) \
, 7\ / \
) / o\ / \
/ / /
/7 / N\ S/ { }
/ /) { | == I
04 S/ / \ {()
a { \ VN v
{ 7/ \ N .
J e ~ \J AN \\ /
/ 1 N\ N
/ f
{ /
. {
02 o) NS
009
0.0 0.2 04 06 08 1o

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

Image matching as a mass-carrying problem

0.8

0.6

0.4

0.2

0.0
0.0 0.2 04 0.6 08 10

Figure 4: Optimal transport between two curves seen as mass
distributions : from a déblai to a remblai.

Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ...,), (1, ...,) the associated (integer) weights,
suchthat Y puj=M=>" v,

10

Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ...,), (1, ...,) the associated (integer) weights,
suchthat Y puj=M=>" v,

Then, find a collection of paths 4™ : t € [0,1] = ~{" minimizing

M 1
£0) =3 [e 3)
m=171=0
under the constraint that for all indices i and j,
#{m e[1,M], ¢ =X’} = Wi, (4)

#{m efi,M], " :y/} = . (5)

10

Dynamic formulation

Let: (x',...,x")and (y',...,y)) be two point clouds
and (u1, ...,), (1, ...,) the associated (integer) weights,
suchthat Y puj=M=>" v,

Then, find a collection of paths 4™ : t € [0,1] = ~{" minimizing

M 1
£0) =3 [e 3)
m=1 t=0
under the constraint that for all indices i and j,
#{m e[1,M], ¢ =X’} = Wi, (4)
#{m e,Mm], " =y’} = v (5)

~ is the optimal transport path between the two measures

I J

Y § :
21 :uf(s)(f = U —_— VUV = - I/jéyj. (6) 10
1= =

Static formulation : permutation

If we relabel the unit masses (x',...,x™) and (y',...,y™),
find a permutation o :[1, M] — [1, M] minimizing

) = 3y "

o is an optimal labeling.

"

Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ¢;; =[x’ — nyZ, find an optimal transport plan

M= (i) j)e 1,1 Minimizing

cor(r) = Z'Yi,j Cij (8)
i
under the constraints :

Vijg, %y 20, Vi, Y yig=wm Vi Y vj=vy.)
j i

12

Static formulation : transport plan

Independent particles should always go in straight lines :
If we denote ¢;; =[x’ — nyZ, find an optimal transport plan

M= (i) j)e 1,1 Minimizing

COr(r) = > wijci (8)
i

under the constraints :

Vi, vj=0, Vi, E Yij = di» V), E vij=v. (9)
j i
This is textbook linear programming.

12

Entropic regularization

Under marginal constraints ' = g, 1T = v, minimize

C?ry(r) = Z%’j Cij — EH(r) (10)
with entropy H(I Z,,%J log(i;) —

Figure 5: Image borrowed to Gabriel Peyré.
13

The regularized transport problem

Schrodinger problem:
How much do e-Brownian bridges get mixed together ?

14

Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

[= diag(a) - K - diag(b) = (a;bjk;)), (11)
with

ki = e Cile, a

WV
o
o
WV
o
S

i7j

15

Equations satisfied by the optimal transport plan

Entropic transport is a scaling problem
The optimal transport plan can be written

[= diag(a) - K - diag(b) = (a;bjk;)), (11)
with

ki = e Cile, a

WV
o
o
WV
o
S

i7j

Sinkhorn theorem = this problem is tractable.

15

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),
ie. diag(a)-Kb=p and v =diag(b)-K'a,

The Sinkhorn algorithm

We want :

diag(a) - K - diag(b) - 1
e. diag(a) - Kb
l.e. Kb

pand v’ =1"-diag(a) - K - diag(b),
and v =diag(b)-K'a,

=K'a,

ol ¥

and

IR

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b
e a=" and b v

~ Kb ~ Ka’

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b
e a=" and b v

~ Kb ~ Ka’

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b
_ M _ v
e a= B and b Ko

Sinkhorn algorithm :

1. startwitha=1,b =1,

The Sinkhorn algorithm

We want :

diag(a) - K -diag(b) -1=p and »" =1".diag(a) - K - diag(b),

ie. diag(a)-Kb=p and v =diag(b)-K'a,
ie. kb=% and Z=kTq
a b

_ K -7

e a= B and b Ko
Sinkhorn algorithm :

1. startwitha=1,b =1,
2. Apply repeatedly
a« b« 2. (13)

Kb’ KTa

Implementation details

We use

a ¢ b « o (14)

- Very efficient scheme for squared distances on a grid.
- Otherwise, we work in the log-domain :

u = ¢ log(a) and v=clog(b) (15)

Implementation details

We use
ol v
a ¢ b « s (14)
- Very efficient scheme for squared distances on a grid.
- Otherwise, we work in the log-domain :
u = ¢ log(a) and v=clog(b) (15)

so that the iterations read

U< U+e log(u) — ¢ log (Z exp <LI,—}-\2C,}>) (16)

J

V<« V+e log(v) — e log (Z exp <u,+\z—c,j>> . (17)

I

The Sinkhorn algorithm : an efficient iterative solver

10
- T
AN
N
08 \ \
N \ \A
~ \
——— \, N {
v N FoN A
/ \ {0\ \
\ \ \
06 \ \ \ \
4 N | \ | \
\ o\
‘/ / ! / NN
I / / /) \
SN i /
p y / /
/ / {
/ \ S { !
04 /s | ¢ } o/
. { \ \ e
/ \ _\ '
k! Y
b= /
\\ 3 Y -z /
i
/
e ¢ N/
02 B Y S
00
0.0 0.2 04 06 08

Figure 6:

Measures to match.

The Sinkhorn algorithm : an efficient iterative solver

0.8

0.6

0.4

0.2

0.0 0.2 04 0.6 08 10

Figure 6: Monge transport, v/ = 0.

The Sinkhorn algorithm : an efficient iterative solver

0.8

0.6

0.4

0.2

0.0
0.0 0.2 04 0.6 08 10

Figure 6: Diffuse transport, /e = .01

The Sinkhorn algorithm : an efficient iterative solver

0.8

0.6

0.4

0.2

0.0
0.0 0.2 04 0.6 08 10

Figure 6: Diffuse transport, /¢ = .03.

Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings

- Light-speed numerical solvers at hand (Cuturi, 2013)

19

Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings

- Light-speed numerical solvers at hand (Cuturi, 2013)
Cons:

- Discards topology : tears shapes apart

19

Pros and cons of Optimal Transport

Pros:

- Well-posed, convex problem
- Global and precise matchings
- Light-speed numerical solvers at hand (Cuturi, 2013)

cons:

- Discards topology : tears shapes apart

This model is mathematically and numerically appealing.
However, it does not provide any smoothness guarantee.

19

Can we build a rich and practical model for
smooth deformations ?

The diffeomorphic framework

Spoiler alert : yes indeed, but it won't be convex anymore

10
/‘/7-" h
08 / \
! 1
/ \
: b
t
06 Vi ™ 4 ~ .
{ . N
: p
N /
. —
D — T
e . .
04 } {
s \
// \
o .~ .
/(yd s
P ; . \
02 y / \ \
: : .
. / . J/
e e
00
0.0 02 02 06 08 10

Figure 7: Source.

20

Spoiler alert : yes indeed, but it won't be convex anymore

10
0.8
\ ~
-
06 e
N\
\
v -
~ S
0.4
\ 1 N
\ .
\
4 .
/
+
02 1 .
©]
kY {
0.0
0.0 02 0.4 0.6 0.8

Figure 7: Target.

20

Spoiler alert : yes indeed, but it won't be convex anymore

1.0
== /;"" .
0.8 4 A}
! !
A AN t -
\ NL \
\ o\
\ ! <\ 2
< / \ A
0.6 - 7 N~
1 SRS \\
{ o e
« . e
/ N
AT S 1
0.4 4 i {
’ i h . '\ .
N 1 e . N
7 4 S \
A\ \ ~ }
- - e % e
e N\ TS e
v Lo \
e
N b \ 3
02 4 N\ ‘
4/ . ‘
- A 4
= Ay J -
N
0.0
0.0 0.2 04 0.6 08

Figure 7: OT matching.

20

Spoiler alert : yes indeed, but it won't be convex anymore

10
o #~ ™
08 — N
1 Nt 4
b) 4 -
\ N
\ IS
] p
06 AT TN \
{ y SO A
A by
N . ¢
\ \ >
N N)
y KWpe
R L — e
e S \
0al s } X {
{ 4 t '\ -
4 L { \ N
< i\ \
LS NI 2
y \ /
p \ 4 \
% V7 A
P 7 N X
0.2 / 7} 1 X Y
{ i } X
. A
. /
= \- J
S ;
009
0.0 0.2 04 06 08 1o

Figure 7: LDDMM matching.

20

The diffeomorphic framework

Shooting on spaces of diffeomorphisms

Riemann : conveniently working with arbitrary geometries

(a) As a deformed square. (b) Embedded in R3.

Figure 8: The donut-shaped torus.

21

Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y.
Simple solution : Try to find a sensible diffeomorphic
trajectory ¢; such that

wo = ldga and pr1- XY, (18)

22

Natural curves on the space of diffeomorphisms

Problem : Match two shapes X and Y.
Simple solution : Try to find a sensible diffeomorphic
trajectory ¢; such that

wo = ldga and pr1- XY, (18)

¢t = V¢ is a vector field on the ambient space RY.
Two main models :

Log-demons ¢; is a one-parameter subgroup — v; is constant.
LDDMM ¢ is a geodesic on the group of diffeomorphisms
seen as a manifold endowed with a right-invariant
metric given by a euclidean norm |Jv¢||,,
— (1, vt) Obeys a geodesic equation.

22

Sometimes, we can compute geodesics explicitly...

(a) The Euclidean plane. (b) The Poincaré disk.

Figure 9: Explicit geodesics on homogeneous manifolds.
(b) is adapted from www.pitt.edu/~jdnorton/.

23

www.pitt.edu/~jdnorton/

But this is not the case in general

Figure 10: Geodesics on the Duhem’s bull, embedded in R>.
Taken from www.chaos-math.org.

2%

www.chaos-math.org

The exponential map

In both models, we get an exponential map :
Log-demons Fast exponentiation of (Id + 5%)>°,

Exp : v € V = ¢ € Diff(RY). (19)

25

The exponential map

In both models, we get an exponential map :
Log-demons Fast exponentiation of (Id + 5%)>°,

Exp : v € V = ¢ € Diff(RY). (19)

LDDMM Euler-like integration of the Hamiltonian geodesic
equations:

, (20)
Pt+o1 = Pt — 0.1-04(pt, Kqpt)(qt)

so that

{Qt+0.1 = gt + 0.7-Kgpt

Expg, : Po € TgM = g1 € M. (21)

25

It works !

Some geodesics on the 3D Torus

/.

(a) 2D parametrization. (b) Embedded in R3.

.
.

Figure 11: Geodesics on the donut-shaped torus.

26

Influence of the kernel width, o = .35

o0 s

06} ¥ G
O |
04l i

. . 0.0 i | | L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

9000
. 0.8}
; LN
oo {aaan
0.4t l

O
O
O
O

(a)

o0 i3
0.2}
. O-%.D 0.‘2 O.‘4 O.‘G O.IB 1.0
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

.
. . I
06} } \
. . . - + 4}
04} l
. . 0.0 . . . L
0.0 02 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

.
. . I
osr } \
. . . - -]
04l l
. . o ‘ | ‘ .
0.0 0.2 0.4 0.6 0.8 1.0

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

0000
g A

0.6 | 1|
. . . - \‘*
0.4} *

. . 0.0 . . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

. . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

® JEESneete
Qe 2]

O
O
O
O

(a)

d
«*
o9 - .
. °%e 0.2 04 06 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

1.0

0.8 -

. . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

1.0

0.8 -

0.4 .//;r
°%e 02 04 06 0.8 10
(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

4 Sa
0.4 ././/r
%98 02 04 06 0.8 10
(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .35

. . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 12: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .35.

27

Influence of the kernel width, o = .50

0000
o0
, VAN
@ 00 .
O ® .
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

0000
o0
o-00
@ 00 |
o ® .
0.0 02 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

.
. . |
. . . 0.2
. . 0.0 L . . L

0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

.
. . |
. . . 0.2
. . . 0.0 L . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

. . . .)
. .) P
. . . { + i

04l }
. . . . -

02}
. . . 0.0 ‘ . . .

0.0 02 04 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

.
. . |
0.2+
. . . 0.0 L . . L
0.0 0.2 0.4 0.6 0.8 10

(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

.
. . |
. . . B »\
0.2+
. . 0.0 i i I L
0.0 0.2 0.4 0.6 0.8 10

a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

A.

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

9000
90
9000 has
@000
0.2 1
o9 .
0.0 0.2 0.4 0.6 0.8 10

a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

A.

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

.
. . i
"l x\\
. . . . / >
. . . l | -
0.2 1

. . 0.0 . . . L

0.0 0.2 0.4 0.6 0.8 10

a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

A.

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

0.6 | \\\
. / ™~
I /
. . . l 0.2}
. . . . 0.0 L . . .
0.0 0.2 0.4 0.6 0.8 1.0

a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o = .50

1.0

0.8 -

TN

04l rl
o——-/!
°%e 02 04 06 0.8 10
(a) Kernel matrix kg,. (b) Shooted cloud (g, pt).

Figure 13: Geodesic shooting, k(x — y) = exp(—||x — y||* /20?),
o= .50.

28

Influence of the kernel width, o0 = 1.

1.0

0.8
VXN
ﬁ
o«
O-%.D 0.‘2 O.‘4 O.‘G O.Iﬁ 1.0
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8+
4 N
ﬁ
o
%0 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8+
VN
ir
o
°%e 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8+
[}
0.4}
oo
0.2}
°%e 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

oo
°%e 02 04 06 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

4 N\
l
o
°%e 0.2 04 06 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

4 S 4“
o
°%e 02 04 06 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

r W 4\ |
— o
°%e 02 04 06 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

4 e b 1
.—/'
°%e 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

4 S }
— o
°%e 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Influence of the kernel width, o0 = 1.

1.0

0.8 -

14 S 1.
0—./'
°%e 02 04 0.6 0.8 10
a) Kernel matrix Rg,. (b) Shooted cloud (g, pt).

Figure 14: Geodesic shooting, R(x — y) = exp(—|x — y||* /25?),
7= i,

29

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

- 0T (6=0)—Z* 5 G, —Z* (6 = +00) Translations

- Deformations computed through geodesic shooting

30

Conclusion

We have now presented the Large Deformation Diffeomorphic
Metric Mapping, or LDDMM setting :

- 0T (6=0)—Z* 5 G, —Z* (6 = +00) Translations

- Deformations computed through geodesic shooting
The (basic) framework relies on three pillars :

- Hamilton’s theorem (g — Kg)
- The current availability of GPUs (parallelism)

- The Reduction Principle ((qt, pt) +— 1)

30

The diffeomorphic framework

An iterative matching algorithm

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".

31

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as:

le() = YIls = llu—vlis = [1Bs % (n—v)llzgoy . (22)

31

Variability decomposition

Let X and Y be two shapes, we are looking for a k-deformation
@ € G such that:

X 5 p(X) S Y with minimal dissimilarity

*

Tlo(X) = Y|*".

As dissimilarity, one can use generic kernel or wasserstein
distances between measures, such as:

lo() = Ylis = lu = vlis = I1Bs* (1 =)llgoy. (22)

Ideally, we are looking for

p(Y = G- X) = argmin|p(X) — Y| (23)
PEGy

31

Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo,) < C < 400

32

Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo,) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - oK, 0(X)) + yar -lo(X) = VIZ. (24)

32

Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo,) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - oK, 0(X)) + yar -lo(X) = VIZ. (24)

That is, minimize over the shooting momentum py :

Cost(Po) = Treg - PoKaoPo + 7att -|lan — Y| 12 (25)

32

Regularized matching problem

However, in practice :

- G, is not well understood
- We want dg(X, ¢(X)) = dg,(Idgo,) < C < 400

We settle for the minimization over the deformation ¢ of :

Cost(p) = reg - dR(X, (X)) + yar-ll(X) = Y[l (24)

That is, minimize over the shooting momentum py :

Cost(Po) = Treg - PoKaoPo + 7att -|lan — Y| 12 (25)

If Yreg << 7att, g1 Should be good enough.

32

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7ar : the geodesic length di(X., (X)) is much less
constrained than the dissimilarity ||¢(X) — YH? 33

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7ar : the geodesic length di(X., (X)) is much less
constrained than the dissimilarity ||¢(X) — YH? 33

Gradient descent on finite-dimensional manifolds

Figure 15: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7ar : the geodesic length di(X., (X)) is much less
constrained than the dissimilarity ||¢(X) — YH? 33

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7att : the geodesic length d2(X, (X)) is much less
constrained than the dissimilarity || (X) — YH? 34

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7att : the geodesic length d2(X, (X)) is much less
constrained than the dissimilarity || (X) — YH? 34

Gradient descent on finite-dimensional manifolds

Figure 16: Matching from the source X to the target Y, constrained to

the .

Here, yreg << 7att : the geodesic length d2(X, (X)) is much less
constrained than the dissimilarity || (X) — YH? 34

The diffeomorphic framework

Let’s read some code

The theano library

1 # Import the relevant tools

2 import time # to measure performance

3 import numpy as np # standard array library

4 import theano # Autodiff & symbolic calculus library :

5 import theano.tensor as T # - mathematical tools;

6 from theano import config, printing # - printing of the Sinkhorn error.
theano:

- Isa python library
- Symbolic computations = efficient CPU/GPU binaries
- Auto-differentiates expressions

35

The theano library

1 # Import the relevant tools

2 import time # to measure performance

3 import numpy as np # standard array library

4 import theano # Autodiff & symbolic calculus library :

5 import theano.tensor as T # - mathematical tools;

6 from theano import config, printing # - printing of the Sinkhorn error.
theano:

- Isa python library
- Symbolic computations = efficient CPU/GPU binaries
- Auto-differentiates expressions

It changed my life... Let's see why.

35

The Hamiltonian

230
231
232
233
234
235
236
237

239
240
241
242
243
244
245
246
247
248
249
250
251
252

254

Part 1 : kinetic energy on the phase space (Hamiltonian) =========================

def

def

def

def

_squared_distances(x, y) :

"Returns the matrix of [x_i-y_jl"2.
x_col = x.dimshuffle(o, 'x', 1)
y_lin = y.dimshuffle('x', 0, 1)
return T.sum((x_col - y_lin)*%2 , 2)

_k(x, y, s) :
"Returns the matrix of k(x_i,y_j)= 1/(1+|x_i-y_jl"2)"{1/4}, with a heavy tail."
sq = _squared_distances(x, y) / (s*%2)

return T.pow(1. / (1. + sq), .25)

_cross_kernels(q, x, s) :

"Returns the full k-correlation matrices between two point clouds q and x."
K_aq = _k(q, g, s)

K_gx = _k(q, x, s)

K_xx = _k(x, x, s)

return (K_qq, K_gx, K_xx)

_Hap(q, p, sigma) :

"The hamiltonian, or kinetic energy of the shape q with momenta p."
pKap = _k(q, q, sigma) * (p.dot(p.T))# Use a simple isotropic kernel
return .5 = T.sum(pKqp) # H(G,p) = 3 - i k(X5 %)P;-pj

36

Geodesic shooting

261

Part 2 : Geodesic shooting

The partial derivatives of the Hamiltonian are automatically computed !

def

def

def

def

_dq_Hqp(q,p,sigma) :
return T.grad(_Hqp(q,p,sigma), q)
_dp_Hqp(q,p,sigma) :
return T.grad(_Hqp(q,p,sigma), p)

_hamiltonian_step(q,p, sigma) :
"Simplistic euler scheme step with dt = .1.
return [q + .1 * _dp_Hqp(q,p,sigma) ,

p - .1« _dq_Hagp(q,p,sigma)]

_HamiltonianShooting(q, p, sigma) :
"Shoots to time 1 a k-geodesic starting (at time 0) from g with momentum p."
We use the "scan" theano routine, which can be understood as a "for" loop
result, updates = theano.scan(fn = _hamiltonian_step,
outputs_info = [q,p],
non_sequences = sigma,
n_steps = 10) # hardcode the "dt = .1"
We do not store the intermediate results,
and only return the final state + momentum :
final_result = [result[0][-1], result[1][-1]]
return final_result

37

OT fidelity, part 1

298 # Part 3 : Data attachment
299
300 def _ot_matching(ql_x, ql_mu, xt_x, xt_mu, radius) :

301 e

302 Given two measures gl and xt represented by locations/weights arrays,

303 outputs an optimal transport fidelity term and the transport plan.

304 e

305 # The Sinkhorn algorithm takes as input three Theano variables

306 ¢ = _squared_distances(ql_x, xt_x) # Wasserstein cost function

307 mu = ql_mu ; nu = xt_mu

308

309 # Parameters of the Sinkhorn algorithm.

310 epsilon = (.02)*%2 # regularization parameter

311 rho = (.5) *x2 # unbalanced transport (Lenaic Chizat)
312 niter = 10000 # max niter in the sinkhorn loop

313 tau = -.8 # Nesterov-like acceleration

314 lam = rho / (rho + epsilon) # Update exponent

B # ELementary OpPerations v uiueeeeneeneeeeneeneeeeneeneneaneneensnsensosensnens
316 def ave(u,ul) :

317 "Barycenter subroutine, used by kinetic acceleration through extrapolation."
318 return tau * u + (1-tau) * ul

319 def M(u,v)

320 "M_{ij} = (-c_{ij} + u_i + v_j) / \epsilon"

321 return (-c + u.dimshuffle(0,'x') + v.dimshuffle('x',0)) / epsilon

322 1se = lambda A : T.log(T.sum(T.exp(A), axis=1) + le-6) # prevents NaN

38

OT fidelity, part 2

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

OACTUATL SINKhOTN T00P & vttt ettt ettt ittt ettt en e eeeeeannenesnennenennnnns
Iteration step
def sinkhorn_step(u, v, foo) :

ul=u # useful to check the update

u = ave(u, lam = (epsilon * (T.log(mu) - lse(M(u,v))) +u))
v = ave(v, lam = (epsilon * (T.log(nu) - lse(M(u,v).T)) + v))
err = T.sum(abs(u - ul))
"break" the loop if error < tol
return (u,v,err), theano.scan_module.until(err < le-4)
Scan = "For loop"
err® = np.arange(1, dtype=config.floatX)[0]
result, updates = theano.scan(fn = sinkhorn_step, # Iterated routine
outputs_info = [(0.*mu), (0.%nu), err0®], # Start
n_steps = niter # Number of iters
)
U, V = result[0][-1], result[1][-1] # We only keep the final dual variables
Gamma = T.exp(M(U,V)) # Transport plan g = diag(a)*Kxdiag(b)
cost = T.sum(Gamma * ¢) # Simplistic cost, chosen for readability
if True : # Shameful hack to prevent the pruning of the error-printing node...
print_err_shape = printing.Print('error : ', attrs=['shape'l)
errors = print_err_shape(result[2])
print_err = printing.Print('error : ') ; err_fin = print_err(errors[-1])

cost += .00000001 * err_fin
return [cost, Gamma]

39

Kernel fidelity, Data attachment term

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375

def

def

_kernel_matching(ql_x, ql_mu, xt_x, xt_mu, radius)
Given two measures gl and xt represented by locations/weights arrays,
outputs a kernel-fidelity term and an empty 'info' array.
K_qq, K_gx, K_xx = _cross_kernels(ql_x, xt_x, radius)
ql_mu = ql_mu.dimshuffle(0,'x"') # column
xt_mu = xt_mu.dimshuffle(0,'x"') # column
cost = .5 » (T.sum(K_qq * ql_mu.dot(ql_mu.T)) \
+ T.sum(K_xx * xt_mu.dot(xt_mu.T)) \
-2+T.sum(K_gx * gl_mu.dot(xt_mu.T)))

[...] # error-tracking stuff
return [cost , ...]

_data_attachment(ql_measure, xt_measure, radius) :
"Given two measures and a radius, returns a cost (Theano symbolic variable)."
if radius == : # Convenient way to allow the choice of a method
return _ot_matching(ql_measure[@], ql_measure[1],
xt_measure[0], xt_measure[1],
radius)
else
return _kernel_matching(ql_measure[0], ql_measure[1],
xt_measure[0], xt_measure[1],
radius)

40

ual cost function

383 # Part 4 : Cost function and derivatives

384

385

386 def _cost(q,p, xt_measure, connec, params)

387 e

388 Returns a total cost, sum of a small regularization term and the data attachment.
389 .. math

390

391 C(q_0, p_6) = .1 * H(qoO,pd) + 1 * A(g_1, x_t)

392

393 Needless to say, the weights can be tuned according to the signal-to-noise ratio.
394 e

395 s,r = params # Deformation scale, Attachment scale

396 ql = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q@ to ql

397 # Convert the set of vertices 'ql' into a measure.

398 ql_measure = Curve._vertices_to_measure(g1, connec)

399 attach_info = _data_attachment(gl_measure, xt_measure, 1)

400 return [.1x _Hgp(q, p, s) + 1.+ attach_info[0] , attach_info[1]] # [cost, info]
401

402

403 # The discrete backward scheme is automatically computed
404 def _dcost_p(q,p, xt_measure, connec, params) :

405 "The gradients of C wrt. p_0 is automatically computed."
406 return T.grad(_cost(q,p, xt_measure, connec, params)[0] , p)
407

4

Minimization script, pa

421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441
442
443
444
445

def perform_matching(Q0, Xt, params, scale_momentum = 1, scale_attach = 1)

""" performs a matching from the source Q0 to the target Xt,
returns the optimal momentum PO.

(Xt_x, Xt_mu) = Xt.to_measure() # Transform the target into a measure

g0 = QO0.points ; p@ = np.zeros(g@.shape) # Null initialization for the momentum

o Y0 R L
print('Compiling the energy functional.')

timel = time.time()

Cost is a function of 6 parameters

The source 'q', the starting momentum 'p'

the target points 'xt_x', the target weights 'xt_mu',

the deformation scale 'sigma_def', the attachment scale 'sigma_att'.

q, p, Xt_x = T.matrices('q', 'p', 'xt_x') ; xt_mu = T.vector('xt_mu') # types

Compilation. Depending on settings specified in the ~/.theanorc file or

given at execution time, this will produce CPU or GPU code under the hood.

Cost = theano.function([q,p, xt_x,xt_mu],
[_cost(q,p, (xt_x,xt_mu), QO.connectivity, params)[0],
_dcost_p(q,p, (xt_x,xt_mu), QO.connectivity, params))

_cost(q,p, (xt_x,xt_mu), QO.connectivity, params)[1] 1,

allow_input_downcast=True)

time2 = time.time()

print('Compiled in : ', '{0:.2f}'.format(time2 - timel), 's"')

42

Minimization script, part 2

445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

469

& Digplay PEE=COMUEINEG scos=sssssscssssssocssssssessssssososoossosssoossooooooo0
connec = QO0.connectivity ; g0 = QO.points ;
g0,cgrid = GridData() ; GO = Curve(god, cgrid)
Given q0, p0 and grid points grid® , outputs (ql,pl,gridl) after the flow
of the geodesic equations from t=0 to t=1
ShootingVisualization = VisualizationRoutine(q®, params)
L-BFGS minimization =—--===--=—=——-—--—--- oo
from scipy.optimize import minimize
def matching_problem(p0_vec) :
"Energy minimized in the variable 'p@'."
po = pO_vec.reshape(q0.shape)
[c, dp_c, info] = Cost(q0, pO, Xt_x, Xt_mu)
matching_problem.Info = info
if (matching_problem.it % 1 == 0) and (c < matching_problem.bestc)
matching_problem.bestc = c
ql,pl,81 = ShootingVisualization(q®, pO, np.array(g0e))
Ql = Curve(ql, connec) ; Gl = Curve(gl, cgrid)
DisplayShoot(Q0, GO, p0, Q1, G1, Xt, info,
matching_problem.it, scale_momentum, scale_attach)
print('Iteration : ',matching_problem.it,', cost : ',c,' info : ',info.shape)
matching_problem.it += 1
The fortran routines used by scipy.optimize expect float64 vectors
instead of gpu-friendly float32 matrices: we need a slight conversion
return (c, dp_c.ravel().astype('float64'))
matching_problem.bestc=np.inf ; matching_problem.it=0 ; matching_problem.Info=None

43

Minimization script, part 3

473
474
475
476
477
478
479

481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497

def

timel = time.time()

res = minimize(matching_problem,
p0.ravel(),
method = 'L-BFGS-B',
jac = True,
options = dict(

function to minimize

starting estimate

an order 2 method

matching_problems returns the gradient

maxiter = 1000, # max number of iterations
ftol = .000001,# Don't bother fitting to float precision
maxcor = 10 # Prev. grads. used to approx. the Hessian

))

time2 = time.time()

p0 = res.x.reshape(q0.shape)

print('Convergence success : ', res.success, ', status = ', res.status)
print('Optimization message : ', res.message.decode('UTF-8"'))
print('Final cost after ', res.nit, ' iterations : ', res.fun)
print('Elapsed time after ', res.nit, ' iterations : ',

'{0:.2f}'.format(time2 - timel), 's')
return p@, matching_problem.Info

matching_demo(source_file, target_file, params, scale_mom = 1, scale_att = 1)
Q0 = Curve.from_file(source_file) # Load source...

Xt = Curve.from_file(target_file) # and target.

Compute the optimal shooting momentum :

p0, info = perform_matching(Q@, Xt, params, scale_mom, scale_att)

44

The diffeomorphic framework

Results

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 0.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 3.

45

Typical run with OT fidelity

N ;‘ - N
.“ Og Q
| | ¥
. © . \\;ﬁ
(o

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 4.

45

Typical run with OT fidelity

| &

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 5.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 6.

45

Typical run with OT fidelity

H o
W 0 7}
A y
§ (4 Q@ © O
"
4 A o = 4
2

B
\"a

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 7.

45

Typical run with OT fidelity

0|

*\3\:@\._‘; ,

S

2

| 7@

(a) Momentum py.

Figure 17: Iteration 8.

(b) Shooted model g,.

45

Typical run with OT fidelity

os / o8
§

e
‘\\\\\\\\\\qw_\f_\” I
g‘:\ ! o~

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 9.

45

Typical run with OT fidelity

S
0, \\\\\\“w——’ 06
N™ @l
W

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 10.

45

Typical run with OT fidelity

s \“““\f—; 06
AN s
WOl Q
1 B
§ E , V3 3

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 11.

45

Typical run with OT fidelity

#
o8 :! 08
us \\\\Wr u /
\\\\\\ (1o
(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 12.

45

Typical run with OT fidelity

»
08| {! 08
. \\\\\\\MJ-\»»» w

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 13.

45

Typical run with OT fidelity

l

mm\\

06| \\\@\\‘w\‘% (‘W‘

(a) Momentum py.
Figure 17: Iteration 14.

(b) Shooted model g,

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 15.

45

Typical run with OT fidelity

\\\\\ /’\ C¥\§

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 16.

45

Typical run with OT fidelity

\\ 44, - ’

@

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 17.

45

Typical run with OT fidelity

\
!A\

o U, 5 I/ 04 (\

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 18.

45

Typical run with OT fidelity

ct

(fﬁ@

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 19.

45

Typical run with OT fidelity

— 7
o

J =

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 20.

45

Typical run with OT fidelity

A

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 21.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 22.

45

Typical run with OT fidelity

4
' X

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 23.

45

Typical run with OT fidelity

A
I s

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 24.

45

Typical run with OT fidelity

;)3
| >
@%ﬁ & 9@(
o \ “l.‘ .'1.: 04
3 £
. 7>
(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 25.

45

Typical run with OT fidelity

o ﬁ o o >
\\\\\%{ & < @(

» " f .

7 X

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 26.

45

Typical run with OT fidelity

\\\%%%W\{ ‘%ﬁ
o ‘ f

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 27.

45

Typical run with OT fidelity

71

> “ X\
: - C

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 28.

45

Typical run with OT fidelity

? / ‘WK
S B

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 29.

45

Typical run with OT fidelity

/
or L X .
i1

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 30.

45

Typical run with OT fidelity

iy

\\\\\\ m &
o

f;’ =

i

v-\)

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 31.

45

Typical run with OT fidelity

“lhing

Y

& y ~
N [

/ffﬂ..‘ = ™

“ > | I >

(a) Momentum py. (b) Shooted model g,.

Mny
e

Figure 17: Iteration 32.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 33.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 34.

45

Typical run with OT fidelity

/
. \\\ o . : (
® bl 2 Q
o W | & , \
~
7

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 35.

45

Typical run with OT fidelity

{
“ &\\M& “)
04 W LN ; 04 ‘
{ +

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 36.

45

Typical run with OT fidelity

W S \ag
i =
: 5 1 NP

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 37.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 38.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 39.

45

Typical run with OT fidelity

“diy,

| B
) 20
75

N

=

Z
=
iy i
%' il

ST

/

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 41.

45

Typical run with OT fidelity

&W& q ?
) W A) i)
A1 &
' .

| e\l | <

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 42.

45

Typical run with OT fidelity

W& C ‘?

W é}’” = iB)

. 4 . ﬂ<
A c =

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 43.

45

Typical run with OT fidelity

%\v

L j ﬁ@f
4 }“‘ . <
//\ﬁ

(a) Momentum py. (b) Shooted model g,.

%ﬁm& 7

Figure 17: Iteration 44.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 46.

45

Typical run with OT fidelity

A

%\\W& <
JWTNA P

-

s / o
Fi
Z i
Lo C/\

/\

2

(@) Momentum p.

(b) Shooted model g,.

Figure 17: Iteration 47.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 48.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 49.

45

Typical run with OT fidelity

\\\WG‘: Q (
A A ‘ o)
k .

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 50.

45

Typical run with OT fidelity

=£
s

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 52.

45

Typical run with OT fidelity

] -
o & </
| \\W% | <

Ay S §\VW'

S
b
g

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 53.

45

Typical run with OT fidelity

%\‘\\ %% Q ‘J(

\
o
o)

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 54.

45

Typical run with OT fidelity

“ 8 %% Q u("

§.

\
r
8

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 55.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 56.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 57.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 58.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 59.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 60.

45

Typical run with OT fidelity

‘4/
\\\\3 = S:i’?
e
\/Z\}
|
@\
/\.,ﬂ

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 61.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 62.

45

Typical run with OT fidelity

"
/ /ﬂﬁ)

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 64.

45

Typical run with OT fidelity

rd

F

—

T
@< .

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 65.

45

Typical run with OT fidelity

<
¥4
O

3

S\

\H|

e

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 66.

45

Typical run with OT fidelity

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 67.

45

Typical run with OT fidelity

N -
g" s
Q = %)
= |

. . N /\

= |

= // \-—,@
0z % 02 \

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 68.

45

Typical run with OT fidelity

2

"",;/

S\

i 3

-

04
//
02

Y

f
=

(a) Momentum py.

Figure 17: Iteration 69.

(b) Shooted model g,.

45

Typical run with OT fidelity
j 2

6

(a) Momentum py. (b) Shooted model g,.

‘kf'
L

Q"

Figure 17: Iteration 70.

45

Typical run with OT fidelity

“ S5 é{’
7 (=

(a) Momentum py. (b) Shooted model g,.

SN 7
L

Q"

Figure 17: Iteration 71.

45

Typical run with OT fidelity

O

e

(a) Momentum py.

Figure 17: Iteration 72.

(b) Shooted model g,.

45

Typical run with OT fidelity

e

A\

(O3 “’?
.)

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 73.

45

Typical run with OT fidelity

e

~
%S

(a) Momentum py. (b) Shooted model g,.

NI

¢

Figure 17: Iteration 74.

45

Typical run with OT fidelity

V7

<
“,
,,l\».%

;3

!

Q

.
’/
.

éfa

(a) Momentum py.

Figure 17: Iteration 75.

(b) Shooted model g,.

45

Typical run with OT fidelity

D
IR

%,
"

%

I\
%

!

§

-~

o' g

,/\/\a

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 77.

45

Typical run with OT fidelity

N
A

."'7

*_.

A58
o
iy =

==

= ;

A

<
/ <w

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 78.

45

Typical run with OT fidelity

N
At

P

P

f;;

&»%\
lh\

.,‘//

*‘.

)

F@Z
)

\._/€

(a) Momentum py.

Figure 17: Iteration 79.

(b) Shooted model g,.

45

Typical run with OT fidelity

N
At

I
‘),
| I\

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 80.

45

Typical run with OT fidelity

<&

)

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 81.

45

Typical run with OT fidelity

.,"

§~.

) \ /b%) /j
- J 2

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 82.

45

Typical run with OT fidelity

L] *. 06 /A
MW §“a -
N i O
04 W ’}mg £ 01) Iy)
S =2

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 83.

45

Typical run with OT fidelity

L] \“. 06 / 2
S =
§F B < @()
04 N ’»’!q B 4)
— i ™
== 1 | \
(;‘% ,//\ \ =

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 85.

45

Typical run with OT fidelity

S A
S =4
@M Q @()
04 N ’}”m s) ,
= 8
= | x
o 7

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 86.

45

Typical run with OT fidelity

Ny
&

s A

o <
\\\M@ <

04 W /mtq & /

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 87.

45

Typical run with OT fidelity

)

=

A,

(a) Momentum py.

(b) Shooted model g,.

Figure 17: Iteration 88.

45

Typical run with OT fidelity

N
=

S A
X f’;b% S
04 \\‘ /mh{ £ 1 @

= ¢

{;‘;

(a) Momentum py. (b) Shooted model g,.

\b

\\
N
3
¢

Figure 17: Iteration 89.

45

Typical run with OT fidelity

[\\“ 06 \}/A
o W My & o \)
' I\

(a) Momentum py. (b) Shooted model g,.

Figure 17: Iteration 90.

45

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 0.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 3.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 4.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 5.

46

Typical run with kernel fidelity

PEa)

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 6.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 7.

46

Typical run with kernel fidelity

.

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 8.

46

Typical run with kernel fidelity

=,

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 9.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 10.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 11.

46

Typical run with kernel fidelity

P ""*'mwf

”"?mln{“"') 9

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 12.

46

Typical run with kernel fidelity

%
o,
“
%%, -
E
4 ""'nnw/

%

as
5 1
‘“fmi i)

os Ry

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 13.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 14.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 15.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 16.

46

Typical run with kernel fidelity

1
f'?ff,-
&,ﬂ
~ f*"um,.-/ ;

”f/mi“i“'ﬁ '

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 17.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 19.

46

Typical run with kernel fidelity

=
7, W, "
2, il

f//mxzu)N

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 20.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 21.

46

Typical run with kernel fidelity

os| fffl o8 \
il
g\\)m““ by A
] ~ ,,/ RS
7 H K .

i \
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 22.

46

Typical run with kernel fidelity

\

ey

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 23.

46

Typical run with kernel fidelity

‘,;/{/ L Hmrvf 3

T R
e U >

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 24.

46

Typical run with kernel fidelity

@)

=

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 25.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 26.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 27.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 28.

46

Typical run with kernel fidelity

’ gm”% N
%
. . f
‘

—~,

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 30.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 31.

46

Typical run with kernel fidelity
C

5

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 32.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 33.

46

Typical run with kernel fidelity

N
| . A

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 34.

46

Typical run with kernel fidelity

//////é = \

- ,,,,,/:] -
"7/,///;‘0«* : & |\ 4’,//@
5;. o R/’T@
P

R S

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 36.

46

Typical run with kernel fidelity

iy, \

‘ | M

<

Z M0k

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 37.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 38.

46

Typical run with kernel fidelity

%’J:Ez;%f . M \ — J/@

T QN

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 39.

46

Typical run with kernel fidelity

/7 08
7 \
= o/ O =il b
.‘?///J;N . % ¢ \ ~ -~ J/ﬁ
. w \\\/‘*c’é[\\.
h et " \\\)
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 40.

46

Typical run with kernel fidelity

2 W0k ’
/4/:'“" . 9
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 41.

46

Typical run with kernel fidelity

2, W04 "
4//."“" . Z
2 T a N ,/?Cﬂ\
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 42.

46

Typical run with kernel fidelity

7%
/ !!P *
‘?//,‘J*" .
] N ,,?WQL\
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 44,

46

Typical run with kernel fidelity

//////«/ \\
////ﬂ w L 4//@
-\“ . ~

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 45.

46

Typical run with kernel fidelity

//////'/ \\
////JJ w 4 4//@
-.\“ . WP

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 46.

46

Typical run with kernel fidelity

7% \
/////w \ 4//@
o \Hvr‘\c\"i:
E "““ " el
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 47.

46

Typical run with kernel fidelity

/’//// \
////“‘ L\ ;/’y@
o4 _/’?‘:\\:ﬂi\
=
"\“ .]
(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 50.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 70.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 90.

46

Typical run with kernel fidelity

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 110.

46

Typical run with kernel fidelity

\
06 K] ﬂ
. \\"}T

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 130.

46

Typical run with kernel fidelity

)

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 150.

46

Typical run with kernel fidelity

(
7\

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 170.

46

Typical run with kernel fidelity

{
!

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 200.

46

Typical run with kernel fidelity

r

(a) Momentum py. (b) Shooted model g;.

Figure 18: Iteration 240.

46

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .01.

47

Influence of the kernel width

os o ~
o, \
“ \
fy“nh .)
o8 1l = /46 0 9 \
Py '7 {
s D o
.

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .02.

47

Influence of the kernel width

1 1
s o8 N
""._' \
% \
06, A /B / 0
ey, 3
¥ \ %
4 = 04 A 1
~ =
TN \ \
~
02 02
o 0

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .03.

47

Influence of the kernel width

: ,
08| 08 N
;»“‘"'" “ \
0 4 < yﬁ o
Py, 2 / Ea
- \"73 \ ~
9 B
04 o 04 \ N \r
~—J
w w
. .

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . Q4.

47

Influence of the kernel width

£ 7
Frgpr

S

e

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = . 05.

47

Influence of the kernel width

‘\\

/0!
\ -
\ —_—
\-n‘/’\r:
)

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = . Q6.

47

Influence of the kernel width

-~

\
.\)
kw;—\ﬂr_
—_)

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = .07.

47

Influence of the kernel width

e

?;*‘“‘“‘“ <
KR

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = .08.

47

Influence of the kernel width

-

z \
'—Haﬂ, | Y
04 é» ="|h 04 k\L_\//;—%‘
~_ 2

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .09.

47

Influence of the kernel width

o
, SN

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 1.

47

Influence of the kernel width

N
§ : @
NS

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .11.

47

Influence of the kernel width

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = .12.

47

Influence of the kernel width

g’“‘m‘ & \
%

//
04 é 1 04 _\/.";—ﬁ:

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .13.

47

Influence of the kernel width

T
2

P>

- i
. R V@\
R IR =

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 14.

47

Influence of the kernel width

N\

k //y@g
\\»:;4?7
auy

(b) Shooted model g,.

(a) Momentum py.

Figure 19: Final matching, o = . 15.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 16.

47

Influence of the kernel width

\
y@\
) LN ;_’41:

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .17.

47

Influence of the kernel width

\
)

=
&V:’—ﬂ\
e

02 \\—)

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .18.

47

Influence of the kernel width

\
. . M
\‘V/;\@\-\,

(b) Shooted model g,.

;&\
1
1
eI L \\{:
I (b N

(a) Momentum py.

Figure 19: Final matching, o = .19.

47

Influence of the kernel width

\
i
g

(b) Shooted model g,.

(a) Momentum py.

Figure 19: Final matching, o = . 2.

47

Influence of the kernel width

1\ e : y
02 = 2

02 ™

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .21.

47

Influence of the kernel width

N
1
. \"/*ﬁf

(b) Shooted model g,.

(a) Momentum py.

Figure 19: Final matching, o = .22.

47

Influence of the kernel width

1
-

0| %, 08
as|) 5 08

%, W ,/

"'n..a o 0 /

e "' \\/‘T@\,
S_—ly

1 . ~

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .23.

47

Influence of the kernel width

03|

.
(ot

(b) Shooted model g,.

S

(a) Momentum py.

Figure 19: Final matching, o = .24.

47

Influence of the kernel width

03|

Y
) Al

: wr

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .25.

47

Influence of the kernel width

03|

™ \\
. \\,;ﬁ

. A

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .26.

47

Influence of the kernel width

03|

'Q
4 | y

i)
02 02

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .27.

47

Influence of the kernel width

03|

A\
ﬂ. \f{ig

it)
02 0

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .28.

47

Influence of the kernel width

03|

Y
4 | y

ST }
¥ ~
02 02

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .29.

47

Influence of the kernel width

"’ N

)

=

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 3.

47

Influence of the kernel width

]

i

=5

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .31.

47

Influence of the kernel width

0 : -7 J})@

\“_;:49

7
Ty & 5
02 02

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .32.

47

Influence of the kernel width

AR

)
0z

-0 f/@

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .33.

47

Influence of the kernel width

“ N

o {@
(e

i

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .34.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 35.

47

Influence of the kernel width

N F \\

0 - U@

| == g
Q!

_B
02

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 36.

47

Influence of the kernel width

s W///é' 08 \
%
o ,?,H‘w-{} m = l@
e =

os é 4"‘.» w \VKT
”s
T
w

—~—

>,

aa
-5

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .37.

47

Influence of the kernel width

/‘/ 08
0
i 7

o ?‘// ",,'“‘“féé 4 0

//.'m'é,""} E
v,

D

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .38.

47

Influence of the kernel width

=
n ‘7/// /’M“% / " \ ﬁ? /@
/Ju%@ L) \W—ﬁ
,'94_’
—~

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .39.

47

Influence of the kernel width

.

—~

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = . 4.

Influence of the kernel width

)
e
\/%

L)

(a) Momentum py.

(b) Shooted model g,.

Figure 19: Final matching, o = . 41.

Influence of the kernel width

7,
N, \
/"// Sl mn«“é&‘ * /
%,
e . —~

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 42.

47

Influence of the kernel width

= \
%/ﬁl@‘% | \fi&\ @
n, L=

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 43.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 44.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 45.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 46.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 47.

47

Influence of the kernel width

o (B e &F -
7 ‘/ v
’/////ulzg‘}

04 :E___ - o
,7,/%

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 48.

47

Influence of the kernel width

'7(// Vi m\wég

////mé .

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 49.

47

Influence of the kernel width

? P \\w&g 7
ik g“} %

e

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 5.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .51.

47

Influence of the kernel width

"? PN

f/////‘uné ;

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .52.

47

Influence of the kernel width

RLLUEEYIoy

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .53.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .54.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .55.

47

Influence of the kernel width

/43
06| - ". 3 06
7 ‘\l\\w«f
///mﬁzg“)

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 56.

47

Influence of the kernel width

8

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .57.

47

Influence of the kernel width

0 =2 @
P4
,?{/ 1)

a ﬂé

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .58.

47

Influence of the kernel width

8

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .59.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 6.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .61.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .62.

47

Influence of the kernel width

.
s

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .63.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 64.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 65.

47

Influence of the kernel width
="

(a) Momentum py. (b) Shooted model g,.

8

Figure 19: Final matching, o = . 66.

47

Influence of the kernel width

"

=

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .67.

47

Influence of the kernel width

i

=~

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .68.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .69.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .70.

47

Influence of the kernel width

. / ///
%,

= "7/ u‘"’hn“«f‘!

4//2/1@:“)

u

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .71.

47

Influence of the kernel width

f//‘,}/} \
=)

%,
(a) Momentum py. (b) Shooted model g,.

%

= 7 b m{
2 M

g
e S
U

Figure 19: Final matching, o = .72.

47

Influence of the kernel width
%
N ?‘// ""'“\“m({

ff/‘,;/} \
’/?m?“‘“‘g \
04 S |
A R
Ui\ —

%,
(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .73.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 74.

47

Influence of the kernel width

. f
Wy, :
f”f
= ';' VLG =
'@ﬁxzxﬁg‘) g
: w ~
(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 75.

47

Influence of the kernel width

o f
& “
= 4’ P C
////JmlL;““‘)
/’/54 = —
W”ﬁ . = ﬁ)

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 76.

47

Influence of the kernel width

/:f/,;;?

%y

e = 717y
o, '*\\nw{ Y
%

’Duﬁz‘“} \ g
w (S e |

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .77.

47

Influence of the kernel width

ﬂf/,;;?

%y

e = 17y
2, '*\wm{ Y
7 1

’f?m?t“} g
w — e |

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .78.

47

Influence of the kernel width

!
///;Z' 3

%
e = 17y
. '*\“\m{ Y
% t

4’);4&2““}

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .79.

47

Influence of the kernel width

/I
///}}}' 3

%
06,
‘% ‘m'*\“\még Y

’0;4&2““}

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 8.

47

Influence of the kernel width

03|

7
%

“? ﬂ"mi!m

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 81.

47

Influence of the kernel width

f///,,?

“z
o
‘%/ ‘m'*\\\\még Y

"’;'m‘z“‘“}

“p

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 82.

47

Influence of the kernel width

Iy
%,
2y

o8 =z m
2, e
//

4’2:;4‘3“‘“‘} \

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 83.

47

Influence of the kernel width

08 f
////’@
%
o -~ Py
7 A Y
/’OM‘“““‘&
“p

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 84.

47

Influence of the kernel width

=

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 85.

47

Influence of the kernel width

)

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 86.

47

Influence of the kernel width

/

"y,
@%

4 ‘Z/// """\\\\mf Y

T “‘“‘}
¥ 1

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 87.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 88.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 89.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 9.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .91.

47

Influence of the kernel width

%
o ey 7y 3
. F oy f
2 M

D ‘}
¥ 1

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .92.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .93.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .94.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .95.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = . 96.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .97.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .98.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = .99.

47

Influence of the kernel width

(a) Momentum py. (b) Shooted model g,.

Figure 19: Final matching, o = 1.0.

47

Conclusion

OT as a fidelity term

Pros:

- Principled globalization trick.

- Versatile : any distance on any feature space will do.

48

OT as a fidelity term

Pros:

- Principled globalization trick.

- Versatile : any distance on any feature space will do.
Cons:

- Only affordable for large e diffusion values.

- Can still be tricked in symmetric situations.

48

OT as a fidelity term

Pros:

- Principled globalization trick.

- Versatile : any distance on any feature space will do.
Cons:

- Only affordable for large e diffusion values.

- Can still be tricked in symmetric situations.
Coming soon (say, end of 2017) :
- Implementation on 3D dense images.

- Investigate the continuum “RKHS — OT".

48

theano for image registration

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative : safer to use with BFGS and line searchs.

49

theano for image registration

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative : safer to use with BFGS and line searchs.

cons:

- Current bottleneck : memory overflows.
- Using BCH formula will require some hack
(OpFromGraph...).

49

theano for image registration

Pros:

- Incredibly versatile and math-friendly.
- Unleash your GPU without getting stuck in CUDA.
- Exact derivative : safer to use with BFGS and line searchs.

cons:

- Current bottleneck : memory overflows.
- Using BCH formula will require some hack
(OpFromGraph...).

Stay tuned :

- RAM-GPU memory links coming soon ?
- Libraries are moving fast : check TensorFlow, etc.

49

Questions?

	Procustes Analysis
	Optimal Transport
	The diffeomorphic framework
	Shooting on spaces of diffeomorphisms
	An iterative matching algorithm
	Let's read some code
	Results

	Conclusion

