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Practical Information
Statement of intent This semester, Gabriel Peyré will introduce you to major theoretical
landmarks in today’s data sciences: wavelet frames, sparsity priors, deep neural networks and
optimal transport.

To supplement these lectures in a way that is most profitable for you, I will strive to teach you
how to implement mathematical ideas in the most efficient way. For better or worse, the ability
to design prototypes quickly is a blind spot in the license curriculum at the ENS... while being a
crucial skill required for any career in applied maths. Fortunately, it’s never too late to learn: let’s
add another string to your bow!

How sessions will pan out I am fully aware that while some students are already fluent in
Matlab+Scipy, most of you have barely gone any further than the standard prépa program as far
as programming is concerned. In order to let everyone go at its own pace, sessions will keep an
informal structure. After a brief recap on Gabriel’s lecture, I will introduce you to a handful of
numerical tours (www.numerical-tours.com/), before answering your questions face-to-face on an
individual basis.

If it takes you the whole session to complete the tours, that’s great: you definitely learnt something!
Otherwise, further readings will be provided and I will stay available to help you out on your
projects.

Sessions take place in room Henri Cartan on Tuesdays, from 10.15 a.m. to 12.15 a.m.
A weekly schedule can be found here : www.math.ens.fr/enseignement/agendas/week.php.

Contact :

– Mail : jean.feydy@ens.fr.

– Office : under the Math Department’s glass roof.

– Webpage : www.math.ens.fr/~feydy/Teaching/index.html



Part I

Introduction to signal processing
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SESSION 1 Entropic Coding

Using numpy, scipy and matplotlib

As of 2017, two main computing frameworks are used by the signal processing community: Matlab
and python+scipy. Predominant in engineering companies, the former provides stability, con-
sistency and an inch-perfect documentation; python’s strong points are its versatility and the
compatibility with most cutting edge machine learning libraries.

As you are from the “python generation” as far as the prépa system is concerned, we will leave
Matlab aside and focus entirely on python, numpy (array manipulation), scipy (math routines),
matplotlib (graphical display) and pytorch (autodiff and GPU) implementations.

Get a functional workstation To take part in the workshops, you will need to install python3,
scipy, jupyter and pytorch. If you know how to use your distribution’s package system, fine-
tuning the details and so on, good for you. Otherwise, the simplest (but heavy!) solution is to use
the Anaconda distribution, available here:

docs.continuum.io/anaconda/install/.

Then, proceed to the installation of Gabriel’s Numerical Tours:

github.com/gpeyre/numerical-tours/archive/master.zip.

Later on, when you have time, don’t forget to install pytorch:

pytorch.org/get-started/locally/.

Crash-course in numpy Unfortunately, the prépa’s program leaves aside all the matrix-
manipulation syntax that you’ll have to get familiar with in the coming weeks. Before getting to
the data science, we first have to get used to it!

To get started, go into your numerical-tours-master/python directory and type “jupyter
notebook” in a terminal (hopefully, this works). Then, enjoy the official tutorial:

docs.scipy.org/doc/numpy/user/quickstart.html,

and remember that StackOverflow’s your best buddy ;-)

For your convenience, here is an adaptation of Julian Gaal’s python cheat sheets, available on
GitHub:

github.com/juliangaal/python-cheat-sheet/tree/master/NumPy,
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Basics

Data science algorithms rely on numerical arrays which are typically provided by the numpy library
– later on, we shall replace them with pytorch’s tensors that support automatic differentiation.
The major difference between lists and arrays is functionality and speed. lists give you
basic operation, but numpy adds FFTs, convolutions, fast searching, basic statistics, linear algebra,
histograms, etc.

axis 0 always refers to row axis 1 always refers to column

Operator Description
np.array([1,2,3]) 1d array
np.array([(1,2,3),(4,5,6)]) 2d array
np.arange(start,stop,step) range array
np.linspace(0,2,9) Evenly spaced values in array of length ...
np.zeros((1,2)) Create and array filled with zeros
np.ones((1,2)) Creates an array filled with ones
np.random.random((5,5)) Creates random array
np.empty((2,2)) Creates an empty array

1 # 1 dimensional
2 x = np.array([1,2,3])
3 # 2 dimensional
4 y = np.array([(1,2,3),(4,5,6)])
5

6 x = np.arange(3)
7 >>> array([0, 1, 2])
8

9 y = np.arange(3.0)
10 >>> array([ 0., 1., 2.])
11

12 x = np.arange(3,7)
13 >>> array([3, 4, 5, 6])
14

15 y = np.arange(3,7,2)
16 >>> array([3, 5])

Array properties, copying and sorting

Operator Description
array.shape Dimensions (Rows,Columns)
len(array) Length of Array
array.ndim Number of Array Dimensions
array.size Number of Array Elements
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Operator Description
array.dtype Data Type
array.astype(type) Converts to Data Type
type(array) Type of Array
np.copy(array) Creates copy of array
other = array.copy() Creates deep copy of array
array.sort() Sorts an array
array.sort(axis=0) Sorts axis of array

1 # Sort in ascending order
2 y = np.array([10, 9, 8, 7, 6, 5, 4, 3, 2, 1])
3 y.sort()
4 print(y)
5 >>> [ 1 2 3 4 5 6 7 8 9 10]

Array manipulation routines, maths

Adding or removing elements, combining arrays

Operator Description
np.append(a,b) Append items to array
np.insert(array, 1, 2, axis) Insert items into array at axis 0 or 1
np.resize((2,4)) Resize array to shape(2,4)
np.delete(array,1,axis) Deletes items from array
np.concatenate((a,b),axis=0) Concatenates 2 arrays, adds to end
np.vstack((a,b)) Stack array row-wise
np.hstack((a,b)) Stack array column wise

1 # Append items to array
2 a = np.array([(1, 2, 3),(4, 5, 6)])
3 b = np.append(a, [(7, 8, 9)])
4 print(b)
5 >>> [1 2 3 4 5 6 7 8 9]
6

7 # Remove index 2 from previous array
8 print(np.delete(b, 2))
9 >>> [1 2 4 5 6 7 8 9]

10

11 a = np.array([1, 3, 5])
12 b = np.array([2, 4, 6])
13 # Stack two arrays row-wise
14 print(np.vstack((a,b)))
15 >>> [[1 3 5]
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16 [2 4 6]]
17 # Stack two arrays column-wise
18 print(np.hstack((a,b)))
19 >>> [1 3 5 2 4 6]

Splitting arrays and more

Operator Description
numpy.split()
np.array_split(array, 3) Split an array in sub-arrays of (nearly) identical size
numpy.hsplit(array, 3) Split the array horizontally at 3rd index
other = ndarray.flatten() Flattens a 2d array to 1d
array = np.transpose(other) array.T Transpose array

1 # Split array into groups of ~3
2 a = np.array([1, 2, 3, 4, 5, 6, 7, 8])
3 print(np.array_split(a, 3))
4 >>> [array([1, 2, 3]), array([4, 5, 6]), array([7, 8])]

Operations, comparison. All of these work element-wise:

Operator Description
np.add(x,y)x + y Addition
np.substract(x,y)x - y Subtraction
np.divide(x,y)x / y Division
np.multiply(x,y)x @ y Multiplication
np.sqrt(x) Square Root
np.sin(x) Element-wise sine
np.cos(x) Element-wise cosine
np.log(x) Element-wise natural log
np.dot(x,y) Dot product
== Equal
!= Not equal
<, <= Smaller than, or equal
>, >= Greater than, or equal
<= Smaller than, or equal

1 # If a 1d array is added to a 2d array (or the other way), NumPy
2 # chooses the array with smaller dimension and adds it to the one
3 # with bigger dimension
4 a = np.array([1, 2, 3])
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5 b = np.array([(1, 2, 3), (4, 5, 6)])
6 print(np.add(a, b))
7 >>> [[2 4 6]
8 [5 7 9]]
9 # Using comparison operators will create boolean NumPy arrays

10 z = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
11 c = z < 6
12 print(c)
13 >>> [ True True True True True False False False False False]

Basic Statistics

Operator Description
np.mean(array) Mean
np.median(array) Median
array.corrcoef() Correlation Coefficient
np.std(array) Standard Deviation
array.sum() Array-wise sum
array.min() Array-wise minimum value
array.max(axis=0) Maximum value of specified axis
array.cumsum(axis=0) Cumulative sum of specified axis

1 # Statistics of an array
2 a = np.array([1, 1, 2, 5, 8, 10, 11, 12])
3

4 # Standard deviation
5 print(np.std(a))
6 >>> 4.2938910093294167
7

8 # Median
9 print(np.median(a))

10 >>> 6.5

Slicing and Subsetting

Operator Description
array[i] 1d array at index i
array[i,j] 2d array at index[i][j]
array[i<4] Boolean Indexing, see Tricks
array[0:3] Select items of index 0, 1 and 2
array[0:2,1] Select items of rows 0 and 1 at column 1
array[:1] Select items of row 0 (equals array[0:1, :])
array[1:2, :] Select items of row 1
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Operator Description
array[ : :-1] Reverses array

1 b = np.array([(1, 2, 3), (4, 5, 6)])
2

3 # The index *before* the comma refers to *rows*,
4 # the index *after* the comma refers to *columns*
5 print(b[0:1, 2])
6 >>> [3]
7

8 print(b[:len(b), 2])
9 >>> [3 6]

10 print(b[0, :])
11 >>> [1 2 3]
12

13 print(b[0, 2:])
14 >>> [3]
15

16 print(b[:, 0])
17 >>> [1 4]
18

19 c = np.array([(1, 2, 3), (4, 5, 6)])
20 d = c[1:2, 0:2]
21 print(d)
22 >>> [[4 5]]
23 # Index trick when working with two np-arrays
24 a = np.array([1,2,3,6,1,4,1])
25 b = np.array([5,6,7,8,3,1,2])
26

27 # Only saves a at index where b == 1
28 other_a = a[b == 1]
29 #Saves every spot in a except at index where b != 1
30 other_other_a = a[b != 1]
31

32 x = np.array([4,6,8,1,2,6,9])
33 y = x > 5
34 print(x[y])
35 >>> [6 8 6 9]
36

37 # Even shorter
38 x = np.array([1, 2, 3, 4, 4, 35, 212, 5, 5, 6])
39 print(x[x < 5])
40 >>> [1 2 3 4 4]
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Matplotlib

Creating and saving plots

Operator Description
fig = plt.figure() a container that contains all plot elements
fig.add_axes(); a = fig.add_subplot(222) Initializes subplot on a grid system row-col-num
fig, b = plt.subplots(nrows=3, nclos=2) Adds subplot
ax = plt.subplots(2, 2) Creates subplot
plt.savefig('pic.png') Saves plot/figure to image

After configuring your plot, you must use plt.show() to make it visible
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Plotting data

Operator Description
lines = plt.plot(x,y) Plot data connected by lines
plt.scatter(x,y) Creates a scatterplot, unconnected data points
plt.bar(xvalue, data , width, color...) simple vertical bar chart
plt.barh(yvalue, data, width, color...) simple horizontal bar
plt.hist(x, y) Plots a histogram
plt.boxplot(x,y) Box and Whisker plot
plt.violinplot(x, y) Creates violin plot
ax.fill(x, y, color='...') Fill area under/between plots
ax.fill_between(x,y,color='...') Fill area under/between plots
fig, ax = plt.subplots()
im = ax.imshow(img, cmap, vmin...) Colormapped or RGB arrays

Customization: color, markers, lines, text

Operator Description
plt.plot(x, y, color='lightblue', alpha = 0.4) colors plot to color blue
plt.colorbar(mappable, orientation='horizontal') mappable: the image, contourset etc.
plt.plot(x, y, marker='*') adds * for every data point
plt.scatter(x, y, marker='.') adds . for every data point
plt.plot(x, y, linewidth=2) Set line width
plt.plot(x, y, ls='solid') Set linestyle, ls can be ommitted, see 2 below
plt.plot(x, y, ls='--') Set linestyle, ls can be ommitted, see below
plt.plot(x,y,'--', x**2, y**2, '-.') Lines are dashed and dash-dot.
plt.text(1, 1,'Example Text',style='italic') Places text at coordinates 1/1
ax.annotate('some annotation', xy=(10, 10)) Annotate the point with coordinates xy
plt.title(r'$delta_i=20$', fontsize=10) Mathtext

Limits, legend, layout

Operator Description
plt.xlim(0, 7) Set x-axis to display 0 - 7
plt.ylim(-0.5, 9) Set y-axis to display -0.5 - 9
ax.set(xlim=[0, 7], ylim=[-0.5, 9]) Set limits
plt.margins(x=1.0, y=1.0) Set margins: add padding to a plot
plt.axis('equal') Set the aspect ratio of the plot to 1
plt.title('just a title') Set title of plot
plt.xlabel('...') Set label next to x-axis
plt.ylabel('...') Set label next to y-axis
ax.set(title='axis', ylabel='...', xlabel='...') Set title and axis labels
ax.legend(loc='best') No overlapping plot elements
plt.xticks(x, labels, rotation='vertical') Set ticks, example
ax.xaxis.set(ticks=range(1,3), ticklabels=[-12,"foo"]) Set x-ticks
ax.tick_params(axis='y', direction='inout', length=10) Make y-ticks longer and go in and out



Using numpy, scipy and matplotlib 13

1 import matplotlib.pyplot as plt
2

3 x = [1, 2.1, 0.4, 8.9, 7.1, 0.1, 3, 5.1, 6.1, 3.4, 2.9, 9]
4 y = [1, 3.4, 0.7, 1.3, 9, 0.4, 4, 1.9, 9, 0.3, 4.0, 2.9]
5 plt.scatter(x,y, color='red')
6

7 w = [0.1, 0.2, 0.4, 0.8, 1.6, 2.1, 2.5, 4, 6.5, 8, 10]
8 z = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
9 plt.plot(z, w, color='lightblue', linewidth=2)

10

11 c = [0,1,2,3,4, 5, 6, 7, 8, 9, 10]
12 plt.plot(c)
13

14 plt.ylabel('some numbers')
15 plt.xlabel('some more numbers')
16 plt.show()

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4 x = np.random.rand(10)
5 y = np.random.rand(10)
6

7 plt.plot(x,y,'--', x**2, y**2,'-.')
8 plt.savefig('lines.png')
9 plt.show()
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1 import matplotlib.pyplot as plt
2

3

4 x = [1, 2, 3, 4]
5 y = [1, 4, 9, 6]
6 labels = ['Frogs', 'Hogs', 'Bogs', 'Slogs']
7

8 plt.plot(x, y, 'ro')
9 # You can specify a rotation for the tick labels in degrees or with keywords.

10 plt.xticks(x, labels, rotation='vertical')
11 # Pad margins so that markers don't get clipped by the axes
12 plt.margins(0.2)
13 plt.savefig('ticks.png')
14 plt.show()

1 import matplotlib.pyplot as plt
2

3 x = [0.5, 0.6, 0.8, 1.2, 2.0, 3.0]
4 y = [10, 15, 20, 25, 30, 35]
5 z = [1, 2, 3, 4]
6 w = [10, 20, 30, 40]
7

8 fig = plt.figure()
9 ax = fig.add_subplot(111)

10 ax.plot(x, y, color='lightblue', linewidth=3)
11 ax.scatter([2,3.4,4, 5.5],
12 [5,10,12, 15],
13 color='black',
14 marker='^')
15 ax.set_xlim(0, 6.5)
16

17 ax2 = fig.add_subplot(222)
18 ax2.plot(z, w, color='lightgreen', linewidth=3)
19 ax2.scatter([3,5,7],
20 [5,15,25],
21 color='red',
22 marker='*')
23 ax2.set_xlim(1, 7.5)
24

25 plt.savefig('mediumplot.png')
26 plt.show()
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1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 # First way #
5

6 x = np.random.rand(10)
7 y = np.random.rand(10)
8

9 figure1 = plt.plot(x,y)
10

11 # Second way #
12

13 x1 = np.random.rand(10)
14 x2 = np.random.rand(10)
15 x3 = np.random.rand(10)
16 x4 = np.random.rand(10)
17 y1 = np.random.rand(10)
18 y2 = np.random.rand(10)
19 y3 = np.random.rand(10)
20 y4 = np.random.rand(10)
21

22 figure2, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
23 ax1.plot(x1,y1)
24 ax2.plot(x2,y2)
25 ax3.plot(x3,y3)
26 ax4.plot(x4,y4)
27

28 plt.show()
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1 import numpy as np
2 import matplotlib.pyplot as plt
3

4 x = np.linspace(0, 1, 500)
5 y = np.sin(4 * np.pi * x) * np.exp(-5 * x)
6

7 fig, ax = plt.subplots()
8

9 ax.fill(x, y, color='lightblue')
10 plt.show()

1 import matplotlib.pyplot as plt
2 import numpy as np
3

4

5 np.random.seed(0)
6

7 x, y = np.random.randn(2, 100)
8 fig = plt.figure()
9 ax1 = fig.add_subplot(211)

10 ax1.xcorr(x, y, usevlines=True, maxlags=50, normed=True, lw=2)
11 ax1.grid(True)
12 ax1.axhline(0, color='black', lw=2)
13

14 ax2 = fig.add_subplot(212, sharex=ax1)
15 ax2.acorr(x, usevlines=True, normed=True, maxlags=50, lw=2)
16 ax2.grid(True)
17 ax2.axhline(0, color='black', lw=2)
18

19 plt.show()
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Entropy, Huffman code

Yesterday’s lesson. In his lecture, Gabriel Peyré introduced the encoding problem in its simplest
form. We first assume that a memoryless machine generates a stream of characters X1, X2, X3, ...
by drawing the Xi’s independently according to a known probability law (pi), our prior information.
Then, as we strive to convert this sequence into a binary stream using a finite dictionary – aka.
hash map – we make sure that the resulting stream can be decoded (unambiguously) on-the-fly,
thus enforcing a prefix code constraint.

Crucially, Shannon exhibited a lower bound on the average length of the binary output:

Average code length > Ep
[
log2

1
p

]
=
∑
i

pi log2
1
pi
, (1.1)

and we call this number the entropy of the probability distribution (pi).

Exercise 1: Can you prove this result?
(Hint: How does the “prefix code” constraint influence the distribution of code lengths? Wouldn’t
it be easier to work with non-integer code lengths?)

Using Huffman’s algorithm, we can define a family of dictionaries on words (bags of characters) with
compression ratios that converge to the limit set by the entropy of the generative distribution. The
Shannon bound is thus sharp as far as hash tables and asymptotical performances are concerned.

Today’s session Today, we’ll go through the Entropic Coding and Compres-
sion numerical tour, implementing Huffman’s algorithm along the way. Go into your
numerical-tours-master/python, open a terminal and type “jupyter notebook”. Then, in
your web browser, open the file coding_2_entropic.ipynb. Thanks to the terrific job of Gabriel
Peyré, Laurent Condat and Pierre Stock, you should be good to go :-)

If you still have some time left, why wouldn’t you read Chris Olah’s blogpost on information theory,

colah.github.io/posts/2015-09-Visual-Information/ ?

He explains the entropy bound much better than I do! Otherwise, you may also install the pytorch
python library, and get your hands on the official tutorial:

pytorch.org/tutorials/beginner/pytorch_with_examples.html.

Summary Applied mathematicians build models. These can look good, canonical or whatever,
but always rely on assumptions made on the underlying practical problem. Hence, at the end of
each session, I will ask you to write a brief summary answering the following questions:

Data model How do I describe the data given as input?
Objective What am I trying to achieve?

Practical constraints What is the range of tools available to solve my problem?
Prior information How do I encode the prior knowledge on the data?

Mathematical result What is the theorem that helps me to achieve non-trivial performance?
Pros and cons In which use cases would my theory be relevant?
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Solution

Exercise 1: Let’s denote by X = {x1, . . . , xI} the alphabet of size I in which the input stream
is encoded. We’re looking for dictionaries f : X → {0, 1}(N) mapping letters to finite binary
words such that the output stream f(X1)f(X2) · · · is unambiguously decodable on-the-fly. This is
equivalent to saying that f is a prefix code:

∀ i, j, f(xi) is a prefix of f(xj) ⇐⇒ i = j. (1.2)

We must show that there is a lower bound on the compression ratio: if `(f(xi)) is the length of the
binary word associated to xi, we have

EX∼p [`(f(X))] =
I∑
i=1

pi`(f(xi)) >
I∑
i=1

pi log2
1
pi

= Ep
[
log2

1
p

]
. (1.3)

Prefix code constraint Thankfully, the prefix code constraint can be expressed analytically in
terms of the code lengths `(f(xi)): ∑

i

2−`(f(xi)) 6 1. (1.4)
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(a) The space of binary codes.
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(b) Shadows cast by an encoding dictionary
. f = {x1 : 0, x2 : 101, x2 : 110}.

Figure 1.1: Graphical demonstration of the fact that a prefix code f : X → {0, 1}(N) satisfies (1.4).

Constrained minimization Once we have understood how to formulate the prefix code con-
straint analytically, proving the Shannon bound is surprisingly simple. Right now, we’re trying to
find a lower bound on

BN? = min
{

I∑
i=1

pili

∣∣∣∣ li ∈ N?,
I∑
i=1

1
2li 6 1

}
. (1.5)

But this quantity is obviously greater than or equal to

BR?+ = inf
{

I∑
i=1

pili

∣∣∣∣ li ∈ R?+,
I∑
i=1

1
2li 6 1

}
, (1.6)
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which is itself equal to

B=
R?+ = inf

{
I∑
i=1

pili

∣∣∣∣ li ∈ R?+,
I∑
i=1

1
2li = 1

}
, (1.7)

as you can always reduce the li’s to saturate the constraint. Now, to compute B=
R?+

, notice that it is
the minimum of the positive linear function

g : l 7→
I∑
i=1

pili (1.8)

on the level set {h(l) = 1}, where h : l 7→
∑I
i=1

1
2li . Thanks to the theory of Lagrange multipliers –

which relies on the implicit function theorem – we know that at the optimum lopt, there exists a
scalar λ such that

∇g(lopt) = −λ∇h(lopt) (1.9)

i.e. ∀ i, pi = +λ log 2
2l

opt
i

(1.10)

i.e. ∀ i, lopt
i = log2

1
pi

+ log2(λ log 2). (1.11)

Now, the constraint
∑
i pi = 1 gives us that∑

i

pi = 1 = λ log(2)
∑
i

1
2l

opt
i

, (1.12)

i.e. λ = 1
log(2) . Hence, we get that lopt

i = log2
1
pi

and

BN? > B=
R?+ =

∑
i

pi log2
1
pi
. (1.13)

All-in-all, up to standard computations and a clever diagram, the Shannon entropy bound is thus
nothing but an integer-valued minimization problem whose optimal value is bounded
below by its real-valued counterpart.

Summary Here is what you should keep in mind, as far as entropic encoding is concerned:

Data model A stream of letters drawn from the alphabet X is generated using an
IID process.

Objective Compress the input stream into a binary stream, with maximal com-
pression ratio. The output stream should be unambiguously decodable
on-the-fly.

Practical constraints Use dictionaries, mapping one symbol at a time from X to {0, 1}(N).
Prior information Fixed probability law (pi) on the alphabet X .

Mathematical result Shannon entropy bound (cf. Lagrange multipliers) + Huffman’s code.
Pros and cons Baseline encoding method, assuming independence between letters in

the input stream and the use of simplistic encoding/decoding devices.
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The bidimensional Discrete Fourier Transform

Working on 2D images can be much more exciting than plotting 1D signals! In order to keep your
spirits up, let’s introduce the 2D Discrete Fourier Transform and work on images for the remainder
of this session.

If u is an M -by-N array, we define its 2D Discrete Fourier transform on (Z/MZ)× (Z/NZ) by

û(ω1, ω2) = 〈eω1,ω2 , u〉 =
M−1∑
m=0

N−1∑
n=0

u(m,n)e−2iπ(ω1m
M +ω2n

N ) (2.1)

where the base vector eω1,ω2 = eω1 ⊗ eω2 is the complex-valued “stripes image” associated to the
wave vector (ω1, ω2) in the periodic Fourier domain (Z/MZ)× (Z/NZ) – often identified with its
zero-centered period [−M//2,+M//2[×[−N//2,+N//2[ – given by

eω1,ω2(m,n) = e+2iπ(ω1m
M +ω2n

N ). (2.2)

Exercise 1: Can you prove a reconstruction formula for the bidimensional Discrete Fourier
Transform? Why can we seamlessly implement a 2D-FFT algorithm?

Remember that working with discrete Fourier transforms is akin to assuming that
your signal is periodic!

Fourier interpolation

Exercise 2: Implement the zero-padding algorithm introduced by Gabriel yesterday. Discuss.
Fill a standard “summary form” as follows:

Data model
Objective

Practical constraints
Prior information

Mathematical result
Pros and cons
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Sub-pixel image processing

Translating an image by an integer number of pixels is easy...
But what about going right by 1/3 of pixel?

Exercise 3: Given a signal u of size N with Fourier transform û and a translation vector z ∈ R,
we define the signal Tzu by its Fourier transform:

T̂zu(ω) =
{
e−

2iπ
N ωz û(ω) if −N/2 < ω < N/2

0 if ω = N/2
. (2.3)

Why is it a sensible choice for the translated-by-z version of u? Why do we have to set T̂zu(N/2)
to zero? Implement this newly defined “Fourier translation” operator on 2D images.

For those of you who are interested in generalized standard operations on images, I recommend the
MVA M2 notes of the “Sub-pixel image processing” course by Lionel Moisan:

www.math-info.univ-paris5.fr/˜moisan/mva/mva_moisan_2012.pdf.

In section 2.1.6, theorem 3, you will find a reasonable set of axioms on translation operators which
are only satisfied by the “Fourier translation” defined above.

Linear image denoising

In your numerical-tours-master/python folder, open the file

denoisingsimp_2b_linear_image.ipynb

and go through the notebook.

Exercise 4: In which sense is the Wiener filter optimal? Prove it.
How can you interpret its behavior?
Theoretically, the Wiener filter relies on an oracle giving the spectral energy density of the signal.
In practice, how do you think it is used?

Summary Can you fill a “summary note” on Wiener filtering?

Data model
Objective

Practical constraints
Prior information

Mathematical result
Pros and cons
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Solution

Exercise 1: First, let’s show that (eω1,ω2)(ω1,ω2)∈(Z/MZ)×(Z/NZ) is an orthonormal basis of
L2((Z/MZ) × (Z/NZ) → C), up to a constant multiplicative factor. For any choice of indices
(ω1, ω2), (ω′1, ω′2) ∈ (Z/MZ)× (Z/NZ), we have〈

eω1,ω2 , eω′1,ω′2
〉

=
∑
m,n

eω1(m)eω2(n) · eω′1(m)eω′2(n) (2.4)

=
〈
eω1 , eω′1

〉
·
〈
eω2 , eω′2

〉
(2.5)

= MNδω1,ω′1
δω2,ω′2

, (2.6)

thanks to the summation formula for geometric series. Therefore, the 2D discrete harmonics matrix
F (whose columns are given by the harmonics (eω1,ω2)) is such that

1
MN

FF ? = IdM×N , (2.7)

where F ? is the Hermitian conjugate of F , i.e. the DFT operator. This means that for any image
u of size M -by-N , we have

u = 1
MN

FF ?u (2.8)

= 1
MN

F û (2.9)

= 1
MN

∑
ω1,ω2

û(ω1, ω2) eω1,ω2 . (2.10)

This is nothing but the standard reconstruction formula for an orthonormal basis, scaled by a
normalization factor 1/MN .

2D-FFT Now, in order to compute û efficiently, one simply has to notice that

û(ω1, ω2) =
∑
m,n

e−2iπ(ω1m
M +ω2n

N )u(m,n) (2.11)

=
∑
n

e−2iπ ω2n
N ·

∑
m

e−2iπ ω1m
M u(m,n) (2.12)

=
∑
n

e−2iπ ω2n
N · û( · , n)(ω1). (2.13)

That is, one can compute a 2D FFT of u by:

1. Computing the 1D-FFT of every line, storing the results in place.

2. Applying a 1D-FFT to every column of the result above.

All of this at an overall cost of O(N ·M log(M) +M ·N log(N)), that is, a O(MN log(MN)) cost
instead of the naive O(M2N2) one.

Exercise 2: An efficient implementation of the zero-padding algorithm is given below:
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1 from __future__ import division
2 from nt_toolbox.general import *
3 from nt_toolbox.signal import *
4 from scipy.misc import imsave
5 import numpy as np
6

7 def fourier_interpolate(u, H, W) :
8 "Interpolates the image u to a shape [u.height+2H, u.width+2W]."
9 fu = fftshift(fft2(u)) # Center the zero frequency

10 pfu = np.pad(fu, [(H,H), (W,W)], 'constant') # Pad the FFT array
11 # We have to balance the "1/MN" factor of the ifft !
12 pfu = pfu * (u.shape[0]+2*H)*(u.shape[1]+2*W) / (u.shape[0]*u.shape[1])
13 pu = real(ifft2(ifftshift(pfu))) # Don't forget the 'real'.
14 return pu
15

16 # Load and interpolate
17 name = 'nt_toolbox/data/letter-z.bmp'
18 x0 = load_image(name) # 70x70
19 px0 = fourier_interpolate(x0, 140,140) # --> x5 height, x5 width
20

21 # Plot and save
22 # px0 may be out of the [0,255] range !
23 sx0 = np.minimum(np.maximum(255*px0, 0), 255).astype(np.uint8)
24 # Save as an RGB image :
25 imsave('output/zero_padding.png', np.stack([sx0,sx0,sx0], axis=2))
26

27 imageplot(x0)
28 imageplot(sx0)

(a) Source image. (b) After Fourier interpolation.

Figure 2.1: Output of the zero padding interpolation algorithm on a non-smooth signal.
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Why doesn’it “work” ? Because the Fourier zero-padding algorithm relies on a lowpass assumption,
which is not satisfied as soon as the underlying continuous image presents a sharp edge.

Understanding subsampling, the Fourier way To understand this, let’s rewrite clearly
what is the action of the zero-padding algorithm in the Fourier domain. Hereafter, I shall write the
main ideas in a cavalier way, slightly abusing the Dirac comb notation – this is the way everyone in
the signal processing community remembers those results. All of this can be rigorously proven by
doing the calculations on finite numbers of periods, working on finite Fourier series before taking
the limit.

Assume that we work with a continuous periodic signal u(x), where x ∈ R/2πZ, and denote by

XT =
∑
n∈Z

δnT (2.14)

the dirac comb of period T , be it in the spatial or spectral domain. Now, thanks to the Nyquist-
Shannon lemma about the Dirichlet kernel (X̂T = X2π/T ), and as we know that

u ?
1

#N
X2π = u, we can show that û · 1

#N
X1 = û, (2.15)

i.e. û is a measure supported by Z:
û =

∑
ω∈Z

û(ω)δω, (2.16)

where the left-hand hat denotes the continuous Fourier transform, and the right-hand one, the
coefficient of the Fourier series of u computed on a single period. Now, taking an N -sampling
of u is akin to considering the sampled signal X2π/N · u, whose Fourier transform XN ? û is an
N -periodized version of û – if you’re a careful reader, you’ll notice the abuse of notations here ;-)

The subampling problem Now, question is: from the N -sampled signal X2π/N · u, can we
reconstruct the M -sampled version X2π/M · u, where M > N ?

Equivalently, can we reconstruct XM ? û from XN ? û ?

Spectral folding This is only possible with some kind of prior telling you how to reconstruct
M Fourier coefficients from the spectral signal of size N you have at hand.

Related to a smoothness prior, the main hypothesis here will be that

∀ ω ∈ Z, |ω| > N/2 =⇒ û(ω) = 0. (2.17)

As a consequence, we then know that the convolutionXN?û is a trivial copy-paste operation,
(we say that there is no spectral folding), and we can simply obtain XM ? û by zero-padding the
centered array used to store a period of XN ? û.

What happens if the lowpass assumption is not satisfied Now, imagine that the support
of û is not contained within ]]−N/2,+N/2[[. Then, the N -sampling operation û 7→XN ? û mixes up
high frequencies with lower ones – this is exactly what happens when you watch videos of spinning
car wheels. Applying our flawed “lowpass prior”, we mistakenly confuse those high frequencies of
û with lower ones: as the contribution of x 7→ ei(ω+N)x is indistinguishable from that of
x 7→ eiωx on the sampling set [[0, 2π/N, . . . , 2π(N − 1)/N ]], we will wrongly interpolate all the
higher harmonics of u. This mistakes results in the ringing artifacts of Figure 2.1.
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Summary Here is what you should remember as far as zero-padding is concerned:

Data model A periodic, continuously supported image u is supposed to be known
through a sampling bitmap, a .png file for instance. The underlying
interpolation assumption is that the spectral support of û is narrow
enough for the Nyquist-Shannon theorem to hold.

Objective Get a finer subsampling of the continuous signal u.
Practical constraints It’s not what I would call a “practical” algorithm...

Prior information The .png file, and a blind faith in your lowpass assumption.
Mathematical result Nyquist-Shannon theorem on dirac combs: if the spectral support of

u is narrow enough, no spectral folding occurs.
Pros and cons The algorithm is easy to implement... But its baseline hypothesis

is more-or-less never satisfied. (A single edge in your signal will
result in dreadful ringing artifacts!) More often than not, you’d be
better off using a simplistic (bi)linear or spline interpolation. However,
this algorithm relies on a fruitful idea: the use of a (mathematically
grounded) transform to perform signal processing tasks.

Exercise 3: An implementation of the sub-pixel translation algorithm is given on the next page.

Just like in Exercise 2, we assume here that u has narrow spectral support. That is (let’s write
everything in 1D, as it’s easier to read),

∀ x ∈ R/NZ, u(x) = 1
N

∑
|ω|<N/2

û(ω) e2iπ ωxN . (2.18)

Under this very strict assumption, it’s pretty straightforward to check that

u(x− t) = 1
N

∑
|ω|<N/2

û(ω) e−2iπ ωtN e2iπ ωxN (2.19)

i.e. T̂tu(ω) =
{
e−

2iπ
N ωt û(ω) if −N/2 < ω < N/2

0 if ω = N/2
. (2.20)

Note that assuming some kind of transitivity of our translation operator, there is no other choice
but to kill the ω = N/2 component, when N is even. Indeed, imagine having to translate the
corresponding “checkerboard” harmonic eN/2 = (+1,−1,+1,−1, · · · ,+1,−1): the only sensible
choice for T1/2(+1,−1,+1,−1, · · · ,+1,−1) would be (0, 0, 0, 0, · · · , 0, 0). But then, we would have

T−1/2T+1/2eN/2 = T−1/2(0, · · · , 0) = (0, · · · , 0) 6= eN/2. (2.21)

Summary Overall, the Fourier translation has the same flaws as the zero-padding interpolation
of Exercise 2: it is only meaningful if there is no sharp edge in the input signal. A single sharp
feature, combined with the nonlocality of the Fourier Transform, results in perceptually awful
results at a log-linear cost.

As linear and spline interpolations provide robustness at a discount linear cost, we understand why
“Fourier translations” are seldom used in practice.
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1 def fourier_translate(u, X, Y) :
2 "Translates the periodic image u using a lowpass assumption."
3 (M,N) = u.shape
4

5 # Coordinates in the DFT domain
6 omega_1 = np.hstack( (np.arange(0,M//2), np.arange(-M//2,0))).reshape((M,1))
7 omega_2 = np.hstack( (np.arange(0,N//2), np.arange(-N//2,0))).reshape((1,N))
8

9 # We have to put to zero the "checkerboard patterns" frequencies,
10 # as there is no way to translate them properly of 1/2 pixel
11 # without getting confused with constant images.
12 phase_1 = omega_1 / M ; phase_1[-M//2,0] = 0
13 phase_2 = omega_2 / N ; phase_2[0,-N//2] = 0
14

15 # phase shifts:
16 phase_1 = phase_1 * Y ; phase_2 = phase_2 * X
17

18 # Apply the above to the input data u
19 fu = fft2(u)
20 ftu = fu * np.exp(-2*np.pi*1j*(phase_1+phase_2)) # column+line = full matrix
21 tu = real(ifft2(ftu))
22 return tu
23

24 # Load and interpolate
25 name = 'nt_toolbox/data/letter-z.bmp'
26 x0 = load_image(name) # 70x70
27 tx0 = fourier_translate(x0, .5, 0)

(a) Translation by half a pixel to the right. (b) Translation by a vector (5.2, 10.3).

Figure 2.2: The Fourier-domain translation delocalizes edges.
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Exercise 4: As always, we’ll write equations in 1D to save space and improve readability. Assume
that a complex vector X of size N is corrupted by a complex random Gaussian (white) noise B of
mean 0 and covariance σ2 IN . That is, the coordinates of B are independent and follow the same
law N (0, σ2).

Now, the noisy signal is given as
Y = X +B (2.22)

and we’re looking for the best convolution filter, on average, with respect to the squared L2 norm.
That is, the optimal filter hopt (of size N):

hopt = arg min
h

EB
[
‖h ? Y −X‖22

]
. (2.23)

Isometries and isotropic noise Now, what’s great about Fourier transform is that it is an
isometry (up to a constant multiplicative factor) which diagonalizes convolution operators. If we
denote by F ? the DFT operator (see Exercise 1), we remark that

E
[
‖h ? Y −X‖22

]
= E

[
‖h ? (X +B)−X‖22

]
(2.24)

= E
[
‖F ? [h ? (X +B)]− F ?X‖22

]
· 1
N

(2.25)

= E
[∥∥∥ĥ · (X̂ + F ?B)− X̂

∥∥∥2

2

]
· 1
N

(2.26)

Now, because F ?F = N IN , one can show that F ?B is also a Gaussian white noise, such that its
components C(ω) are independent and follow a normal law N (0, Nσ2). This means that we can
separate the multivariate optimization on ĥ into N separate minimizations on the coefficients ĥ(ω):

arg min
h

E
[
‖h ? Y −X‖22

]
= arg min

h

∑
ω∈Z/NZ

E
[
|ĥ(ω) · (X̂(ω) + C(ω))− X̂(ω)|2

]
(2.27)

Eventually, as C(ω) is a random variable whose mean is equal to zero (plus the fact that all the
other terms are deterministic), we can write

E
[
|ĥ(ω) · (X̂(ω) + C(ω))− X̂(ω)|2

]
= |ĥ(ω)− 1|2 · |X̂(ω)|2 + |ĥ(ω)|2 ·Nσ2 (2.28)

= |ĥ(ω)|2 ·
(
|X̂(ω)|2 +Nσ2

)
− 2Re(ĥ(ω))|X̂(ω)|2 (2.29)

+ |X̂(ω)|2 (2.30)

which is minimized in the variable ĥ(ω) if and only if

ĥ(ω) =
1
N |X̂(ω)|2

1
N |X̂(ω)|2 + σ2

. (2.31)

Note that the result still holds if you’re looking at a real-valued vector X corrupted by a real-valued
Gaussian white noise B.
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Interpretation The Wiener filter thus scales every harmonic of the signal with respect to the
expected “SNR”, or signal-to-noise ratio |X̂(ω)|2/Nσ2. If it is high enough, ĥ(ω) ' 1: we rely on
the signal, even though it might be a bit noisy. However, if it is too low, the conservative bet of
Wiener is to shrink the corresponding frequency, thus preventing the inclusion of noise into the
output signal.

As convolution filters act on Fourier frequencies independently, this behavior makes a lot of sense.
In practice, one computes typical power spectrums 1

N |X̂(ω)|2 on training images, and use this prior
knowledge to implement an efficient linear denoising on similar images. As natural images tend to
have a spectral energy which is heavily concentrated in the lowest frequencies, the Wiener filter can
achieve decent performances by “smoothing out” the noise texture.

Summary Here is what you should remember about Wiener filtering:

Data model A signal X is corrupted by a Gaussian white (i.e. pixel-wise) noise.
Objective Find a denoised image which is as close to the original X as possible,

in the average-L2 sense.
Practical constraints Use a fixed convolution filter.

Prior information The spectral power function of X.
Mathematical result Gaussian white noise is “compatible” with the Fourier transform,

which also diagonalizes convolution operators.
Pros and cons Easy to implement, but tends to smooth edges out.
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SESSION 3 Multiscale analysis using wavelets

Computing a multiscale decomposition, the Fourier way

Given a signal u0 of size N0, how can we compute a relevant multiscale decomposition? In practice,
we’re looking for a linear operator

W : CN0 → CN1 × · · · × CNn
u0 7→ (u1, . . . , un) (3.1)

which should be an isometry, that is,

∀ u ∈ CN0 , ‖u‖2 = ‖Wu‖2 , (3.2)

and be such that factor-2 sub- and supsamplings of u corresponds to left and right shifts in the
multiscale transform n-uple – at least informally. We’ll say that u1 (resp. un) encodes the lowest
(resp. largest) scales of u.

To build such an operator, one can simply iterate in the Fourier domain a highpass-lowpass routine

Wg,h : CN0 → CN0 × CN0

u 7→ (uhigh, ulow) = (u ? g, u ? h) (3.3)

on the successive “second coordinates” or “low frequencies”, and choose

u1 = u0 ? g1, u2 = (u0 ? h1) ? g2, · · · (3.4)
un−1 = (u0 ? h1 ? · · · ? hn−2) ? gn−1, un = u0 ? h1 ? · · · ? hn−1. (3.5)

where the scaled filters are given through their Fourier transforms:

ĝk(ω) = ĝ(2k ω), ĥk(ω) = ĥ(2k ω). (3.6)

Exercise 1: Show that the above operator W – or equivalently, Wg,h – is an isometry if and
only if we have

∀ ω ∈ R, |ĝ(ω)|2 + |ĥ(ω)|2 = 1. (3.7)

A typical strategy is then to choose a nonnegative radial lowpass formula ĥ(|ω|) ∈ R+, and take its
companion highpass filter

ĝ(|ω|) =
√

1− ĥ(|ω|)2. (3.8)

Using those continuous formulas on Discrete Fourier Transforms will be akin to making the
assumption that our sampled signal u satisfies the hypothesis of the Nyquist-Shannon theorem.

31
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Exercise 2: Implement the Shannon, Meyer and Simoncelli multiscale decompositions on 1D
and 2D signals; according to the terminology of the paper Steerable Pyramids and Tight Wavelet
Frames in L2(Rd), by Unser, Chenouard and Van De Ville (2011), they respectively correspond to

ĥshannon(ω) =
{

1 if |ω| < π

0 if π 6 |ω|
(3.9)

ĥmeyer(ω) =


1 if |ω| 6 π/2

cos(|ω| − π
2 ) if π/2 6 |ω| 6 π

0 if π 6 |ω|
(3.10)

ĥsimoncelli(ω) =


1 if |ω| 6 π/2

cos
(
π
2 log2( 2|ω|

π )
)

if π/2 6 |ω| 6 π

0 if π 6 |ω|
(3.11)

with the convention that the sampled signal u is 1-sampled, i.e. the axis of an fftshifted version
of û are mapped onto [−π, π[. You may want to plot these curves before diving into your python
code! Discuss.

Computing a multiscale decomposition, the Mallat way

Now, let’s implement the Fast Wavelet Transform of Stéphane Mallat, which was explained by
Gabriel in the previous lecture. Combined with the lecture notes, his numerical tour covers pretty
much everything you need to know on the topic. So, within Jupyter, open the file called

wavelet_4_daubechies2d.ipynb.

To get interaction with your images, and thus become able to zoom in,

simply replace the magic line %matplotlib inline with %matplotlib notebook.

Beware: Due to changes in python’s default behavior, you may encounter a few TypeErrors
when trying to use sliced indexing. This is because Jmax = np.log2(n)-1 = 17.0 is a float and
not an integer, which confuses the indexing routines... As a workaround, in your notebook and in
the nt_toolbox/signal.py file,

simply replace arange(Jmax,Jmin-1,-1) with arange(int(Jmax),int(Jmin)-1,-1).

Exercise 3: Go through the numerical tour, and answer questions 1 and 3 at the end of the
notebook:

1. Compare the approximation obtained using wavelet with different number of vanishing
moments. Remember that Daubechies filters are given in Gabriel’s notes.

2. Implement a 2-D separable wavelet transform. (No correction will be given next week, as it’s
just more of the same...)

3. Display a 2-D wavelet by applying the backward transform to a Dirac (i.e. all zeros excepted
a single 1 at a well-chosen position).

Exercise 4: In your opinion, how will the multiscale decompositions of Exercise 2 (basically,
the Stationary Wavelet Transform) and that of Exercise 3 (the standard Fast Wavelet Transform)
compare with each other and the Discrete Fourier Transform, when applied to various signal
processing tasks such as compression and denoising ?



Solution 33

Solution

Exercise 1: First, let’s note that a few simple choices of g and h do the trick:

– If (g, h) = (δ0, 0), i.e. (ĝ, ĥ) = (1, 0), then Wg,h(u) = (u, 0) and

∀ u, ‖u‖22 = ‖u‖22 + 02 = ‖(u, 0)‖22 = ‖Wg,h(u)‖22 . (3.12)

– If (g, h) = ( 1√
2δ0,

1√
2δ0), i.e. (ĝ, ĥ) = ( 1√

21, 1√
21), then Wg,h(u) = ( u√

2 ,
u√
2 ) and

∀ u, ‖u‖22 = 1
2‖u‖

2
2 + 1

2‖u‖
2
2 =

∥∥∥∥( u√
2
,
u√
2

)∥∥∥∥2

2
= ‖Wg,h(u)‖22 . (3.13)

In the general case, denoting F the Fourier transform operator, we have

Wg,h is an isometry ⇐⇒ ∀ u, ‖u‖22 = ‖Wg,h(u)‖22 (3.14)
⇐⇒ ∀ u, ‖u‖22 = ‖g ? u‖22 + ‖h ? u‖22 (3.15)
⇐⇒ ∀ u, ‖F(u)‖22 = ‖F(g ? u)‖22 + ‖F(h ? u)‖22 (3.16)

⇐⇒ ∀ u, ‖û‖22 = ‖ĝ · û‖22 +
∥∥∥ĥ · û∥∥∥2

2
(3.17)

⇐⇒ ∀ u,
∫
ω

|û(ω)|2dω =
∫
ω

|û(ω)|2 ·
(
|ĝ(ω)|2 + |ĥ(ω)|2

)
dω (3.18)

⇐⇒ ∀ u, 1 = |ĝ(ω)|2 + |ĥ(ω)|2 (3.19)

⇐⇒ ∀ i, 1 = |ĝi(ω)|2 + |ĥi(ω)|2 (3.20)
⇐⇒ ∀ i, Wgi,hi is an isometry. (3.21)

Now, assuming that the above condition is satisfied, let’s show that W is an isometry. Consider the
following diagram:

u0 = v0 v1 v2 v3 · · · vn−2 vn−1 = un

u1 u2 u3 · · · un−1

h1

g1

h2

g2

h3

g3

hn−1

gn−1

At every step, we have

(ui, vi) = Wgi,hi(vi−1), so that ‖vi−1‖22 = ‖ui‖22 + ‖vi‖22 . (3.22)

Eventually, a recurrence shows that W is an isometry, that is,

∀ u, ‖u0‖22 = ‖u1‖22 + ‖u2‖22 + · · · + ‖un‖22 . (3.23)
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Exercise 2: An implementation in the Fourier domain is given below.

1 from __future__ import division
2 from nt_toolbox.general import *
3 from nt_toolbox.signal import *
4 from scipy.misc import imsave
5 import numpy as np
6 %pylab inline
7 %matplotlib notebook
8

9 # Define the three lowpass functions which act pointwise on arrays "AbsOm",
10 # filled with the absolute value of pulsation Omega in [-pi, pi[
11 # (standard convention in continuous signal analysis)
12 def shannon(AbsOm) :
13 fh = np.zeros(AbsOm.shape)
14 fh[AbsOm < np.pi] = 1
15 return fh
16

17 def meyer(AbsOm) :
18 fh = np.zeros(AbsOm.shape)
19 indices = np.logical_and(np.pi/2 <= AbsOm, AbsOm <= np.pi)
20 om = AbsOm[indices]
21 fh[indices] = np.cos(om - np.pi/2)
22 fh[AbsOm <= np.pi/2] = 1
23 return fh
24

25 def simoncelli(AbsOm) :
26 fh = np.zeros(AbsOm.shape)
27 indices = np.logical_and(np.pi/2 <= AbsOm, AbsOm <= np.pi)
28 #print(indices)
29 om = AbsOm[indices]
30 fh[indices] = np.cos(np.pi/2 * np.log2(2*om/np.pi))
31 fh[AbsOm <= np.pi/2] = 1
32 return fh
33

34 def fWgh(j, fu, name) :
35 """
36 If fu is the ffshifted fourier transform of a signal u,
37 return a highpass-lowpass couple of fftshifted fourier transforms.
38 """
39 if len(fu.shape) == 1 : # 1D signal
40 AbsOm = np.abs(np.linspace(-np.pi, np.pi, fu.shape[0]+1))[:-1]
41 elif len(fu.shape) == 2 : # 2D signal
42 Omega_1 = np.linspace(-np.pi, np.pi, fu.shape[0]+1)[:-1].reshape(
43 (fu.shape[0],1))
44 Omega_2 = np.linspace(-np.pi, np.pi, fu.shape[1]+1)[:-1].reshape(
45 (1,fu.shape[1]))
46 AbsOm = np.sqrt( Omega_1**2 + Omega_2**2 )
47 methods = {'shannon':shannon, 'meyer':meyer, 'simoncelli':simoncelli}
48 fh = methods[name](AbsOm * 2**j)
49 fg = np.sqrt( 1 - fh**2 )
50 return (fg * fu, fh * fu)
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49 def multiscale(u, scales, name) :
50 if len(u.shape) == 1 : # 1D signal
51 fu = fft(u)
52 elif len(u.shape) == 2 : # 2D signal
53 fu = fft2(u)
54 fv = fftshift(fu) # v0 = u0
55 funs = [] # list of [u1,...,un]
56 for i in range(scales-1) :
57 (fv_high, fv_low) = fWgh(i, fv, name)
58 funs.append(fv_high)
59 fv = fv_low
60 funs.append(fv) # un = vn
61 if len(u.shape) == 1 :
62 uns = [real( ifft(ifftshift(fun))) for fun in funs]
63 elif len(u.shape) == 2 :
64 uns = [real(ifft2(ifftshift(fun))) for fun in funs]
65 return uns
66

67 # Load and interpolate
68 name = 'nt_toolbox/data/lena_cropped_64.png'
69 I0 = load_image(name) # 64x64
70

71 for filtername in ['shannon', 'meyer', 'simoncelli'] :
72 Ins = multiscale(I0, scales = 7, name = filtername)
73 pIns = [In + .5 for In in Ins] # Set 0 = gray color for all scales...
74 pIns[-1] = Ins[-1] # Except the lowpass one.
75

76 # Plot and save
77 for (n, In) in enumerate(pIns):
78 sIn = np.minimum(np.maximum(255*In, 0), 255).astype(np.uint8)
79 imsave('output/'+filtername+'_'+str(n)+'.png',
80 np.stack([sIn,sIn,sIn], axis=2))

Results On the next page, we give the multiscale decompositions corresponding to this cropped
version of Lena:
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Exercise 3: You can append this solution at the end of the numerical tour.

1 from scipy.misc import imsave
2 from scipy.signal import daub
3

4 daubechies = [np.hstack(([0.],daub(p))) for p in range(1, 11)]
5 daubechies = [h/norm(h) for h in daubechies]
6 name = 'nt_toolbox/data/lena_cropped_256.png'
7 f = load_image(name) ; n = f.shape[0]
8 for (p,h) in enumerate(daubechies) :
9 p = p+1

10 print('Daubechies ' + str(p) + ': ' + str(h))
11 fW = perform_wavortho_transf(f,Jmin,+1,h)
12 # Linear representation ----------------------------------------
13 eta = 4
14 fWLin = zeros((n,n))
15 fWLin[:int(n/eta):,:int(n/eta):] = fW[:int(n/eta):,:int(n/eta):]
16 fLin = perform_wavortho_transf(fWLin,Jmin,-1,h)
17

18 print('Linear SNR : ' + str(snr(f,fLin)))
19 save = np.minimum(np.maximum(255*fLin, 0), 255).astype(np.uint8)
20 imsave('output/linear_daubechies_'+str(p)+'.png',
21 np.stack([save,save,save], axis=2))
22 # Nonlinear representation -------------------------------------
23 # Simply thresholding above a common value is not a fair comparison
24 # in terms of compression efficiency. Instead, we'll save "the best 10%"
25 # and compare the resulting images, both perceptually and using SNR.
26 fW_flat = fW.ravel()
27 indices = np.argsort(abs(fW_flat))
28 fW_flat[indices[:int(np.ceil(.95*len(indices)))]] = 0
29 fWT = fW_flat.reshape(fW.shape)
30 fnl = perform_wavortho_transf(fWT,Jmin,-1,h)
31

32 print('Non-Linear SNR : ' + str(snr(f,fnl)))
33 save = np.minimum(np.maximum(255*fnl, 0), 255).astype(np.uint8)
34 imsave('output/nonlinear_daubechies_'+str(p)+'.png',

Figure 3.1: A 64-by-64 cropped patch from the Lena test image.
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Figure 3.2: Three multiscale decompositions of the same cropped image, in the spatial (left) and
spectral (right, square root of the norm of the Fourier coefficient) domains. High scales are above
and low scale below; the first, second and third columns are computed using Shannon, Meyer and
Simoncelli filters, respectively.
Meyer and Simoncelli decompositions are pretty similar, but the Shannon formula seems to introduce
ringing artifacts. This is a consequence of the the discontinuities of the bandpass filters: as Shannon
bandpass functions are heavy-tailed and delocalized in the spatial domain, sharp edges contaminate
the whole image plane.
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35 np.stack([save,save,save], axis=2))
36 # Visualize the wavelets -----------------------------------------
37 fWav = 0 * fWT ; fWav[13,13] = 10 # Play around with those values !
38 Wav = perform_wavortho_transf(fWav,Jmin,-1,h)
39

40 save = np.minimum(np.maximum(255*(Wav+.5), 0), 255).astype(np.uint8)
41 imsave('output/daub_'+str(p)+'.png', np.stack([save,save,save], axis=2))

Exercise 4: The second type of multiscale decomposition, computed by the Fast Wavelet
Transform, offers better performances in compression tasks as it is quite memory-savvy: large scales
are optimally subsampled, so that the whole pyramid has the same memory footprint as the original
image.
However, this compact representation is not translation-invariant: if you translate a simple image
(say, a sampled wavelet) by one pixel to the right, its Wavelet transform will be completely modified
as lower scales take up the burden of the representation of a large wavelet “out of the sampling
grid”. Meanwhile, a simplistic Bank of Filters “Fourier” decomposition would be... translated.
Accordingly, robust denoising and analysis schemes will favor redundant representations such as
the one computed in Exercises 1 and 2.
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Figure 3.3: Non-linear approximations of a cropped Lena image, keeping only the largest five-percent
coefficients of a 2D wavelet decomposition. Here, we’re using Daubechies filters with p = 1 (top
left) to p = 8 (bottom right) vanishing moments.
As evidenced here, having many vanishing moments allows one to compress the smooth parts of
the signal more efficiently. But with larger filter sizes, large “lone” wavelet coefficients can give
birth to unpleasant visual artifacts, especially next to the borders of smooth regions. In this case, I
would say that the filter with three vanishing moments offers the best trade-off.

Figure 3.4: A typical 2D-Daubechies wavelet on the diagonal (at position 14-14 in the dyadic
decomposition), where the number of vanishing moments goes from p = 1 (top left) to p = 8
(bottom right).
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SESSION 4 Nonlinear approximations

Image approximation with orthogonal bases

Gabriel’s numerical tour makes for a perfect workshop session in itself: within Jupyter, open the
file called

coding_1_approximation.ipynb

and complete Exercises 1 to 12.

To get interaction with your images, and thus become able to zoom in,

simply replace the magic line %matplotlib inline with %matplotlib notebook.

Beware: Due to changes in python’s default behavior, you may encounter a few TypeErrors
when trying to use sliced indexing. This is because Jmax = np.log2(n)-1 = 17.0 is a float and
not an integer, which confuses the indexing routines... As a workaround, in your notebook and in
the nt_toolbox/signal.py file,

simply replace arange(Jmax,Jmin-1,-1) with arange(int(Jmax),int(Jmin)-1,-1).

Solution

All the solutions are located in your nt_solutions/coding_1_approximation/ folder.
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SESSION 5 Compression and denoising

Image denoising with orthogonal bases

Gabriel’s numerical tour makes for a perfect workshop session in itself: within Jupyter, complete
the notebook called

denoisingwav_2_wavelet_2d.ipynb.

To get interaction with your images, and thus become able to zoom in,

simply replace the magic line %matplotlib inline with %matplotlib notebook.

Beware: Due to changes in python’s default behavior, you may encounter a few TypeErrors
when trying to use sliced indexing. This is because Jmax = np.log2(n)-1 = 17.0 is a float and
not an integer, which confuses the indexing routines... As a workaround, in your notebook and in
the nt_toolbox/signal.py file,

simply replace arange(Jmax,Jmin-1,-1) with arange(int(Jmax),int(Jmin)-1,-1).

Solution

The solution of the mini-exercise is located in the solution folder
nt_solutions/denoisingwav_2_wavelet_2d/.

Exercise 1:

1 ms = array([1,2,3,4,8,16,32])
2 snrs = []
3 for m in ms:
4 print('m = ' + str(m))
5 [dY,dX] = meshgrid(arange(0,m),arange(0,m))
6 delta = concatenate( (dX.reshape(m*m,1), dY.reshape(m*m,1)), axis=1)
7 fTI = zeros([n,n])
8 T = 3*sigma
9 for i in arange(0,m*m):

10 fS = circshift(f,delta[i,:])
11 a = perform_wavortho_transf(fS,Jmin,1,h)
12 aT = thresh_hard(a,T)
13 fS = perform_wavortho_transf(aT,Jmin,-1,h)
14 fS = circshift(fS,-delta[i,:])
15 fTI = i/(i+1.0)*fTI + 1.0/(i+1)*fS
16 snrs.append(snr(f0,fTI))
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17 snrs = array(snrs)
18 plot(ms, snrs)

Exercise 2:

1 m = 8 # Reasonably good, and we don't want to wait forever...
2

3 Tlist = linspace(.8,4.5,25)*sigma
4 err_soft = zeros([len(Tlist),1])
5 err_hard = zeros([len(Tlist),1])
6 for (j,T) in enumerate(Tlist):
7

8 [dY,dX] = meshgrid(arange(0,m),arange(0,m))
9 delta = concatenate( (dX.reshape(m*m,1), dY.reshape(m*m,1)), axis=1)

10

11 # Cycle spinning
12 fTI_hard = zeros([n,n]) ; fTI_soft = zeros([n,n])
13 for i in arange(0,m*m):
14 fS = circshift(f,delta[i,:])
15 a = perform_wavortho_transf(fS,Jmin,1,h)
16 # Hard thresholding :
17 aT = thresh_hard(a,T)
18 fS = perform_wavortho_transf(aT,Jmin,-1,h)
19 fS = circshift(fS,-delta[i,:])
20 fTI_hard = i/(i+1.0)*fTI_hard + 1.0/(i+1)*fS
21 # Soft thresholding :
22 aT = thresh_soft(a,T)
23 aT[:2^Jmin:,:2^Jmin:] = a[:2^Jmin:,:2^Jmin:]
24 fS = perform_wavortho_transf(aT,Jmin,-1,h)
25 fS = circshift(fS,-delta[i,:])
26 fTI_soft = i/(i+1.0)*fTI_soft + 1.0/(i+1)*fS
27 err_hard[j] = snr(f0,fTI_hard)
28 err_soft[j] = snr(f0,fTI_soft)
29

30 h1, = plot(Tlist/sigma,err_hard)
31 h2, = plot(Tlist/sigma,err_soft)
32 axis('tight')
33 legend([h1,h2], ['Hard', 'Soft']);

Exercise 3: There’s a whole numerical tour dedicated to block thresholding! In your python
folder, it’s the file called

denoisingwav_4_block.ipynb.



Part II

Inverse problems and sparsity
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SESSION 6 Variational methods for inverse problems

Image deconvolution using a Sobolev or TV regularization

Gabriel’s numerical tour makes for a perfect workshop session in itself: within Jupyter, open the
file called

inverse_2_deconvolution_variational.ipynb

and complete Exercises 1 to 4.

To get interaction with your images, and thus become able to zoom in,

simply replace the magic line %matplotlib inline with %matplotlib notebook.

To get figures in the current cell, you can then add a few figure(); statements before the
imageplots(...).

Make sure that you understand why :

1. The L2 and Sobolev deconvolutions can be computed using closed-form solutions in the
Fourier domain.

2. The use of the squared L2 distance as a dissimilarity criterion between y and Φf is related
to a Gaussian white noise model. (Hint: think about the Maximum A Posteriori statistical
framework)

3. The L2-gradient of the TV functional 1
2‖y − h ? f‖

2
2 + λ

∑
x

√
‖∇f(x)‖22 + ε2 is given by

h̃ ? (h ? f − y)− λ div

 ∇f√
‖∇f‖22 + ε2

 . (6.1)

Solution

All the solutions are located in your

nt_solutions/inverse_2_deconvolution_variational.ipynb/

folder.
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SESSION 7 Sparse regularization

How should we think about gradient descent?

Most signal processing tasks (denoising, deconvolution, inpainting...) can be expressed as the
maximization of a score; or conversely, as the minimization of an energy. If X is the space of
signals (say, Rn for n sufficiently large) and d is the data at hand, we’re looking for a signal x∗
which is optimal in the sense of a rating formula Ed : X → R, that is,

x∗ = arg min
x∈X

Ed(x). (7.1)

Sometimes, Ed is so simple that finding x∗ from the data d is trivial. However, when one digs a
little bit deeper, difficult problems arise quickly to the attention of the data scientist. Supervised
machine learning is about learning, more or less by heart, the decision rule d 7→ x∗. If the amount of
data is sufficient, and if implicit (Convolutional Neural Nets, ...) or explicit (kernels, ...) constraints
allow us to break the curse of dimensionality for our problem, this is a sensible strategy.

Order 1 minimization schemes In most practical cases, however, bypassing the minimization
step is not feasible. It is therefore crucial to know how to find a convincing (local) minimum of a
generic functional E. A standard approach is to use gradient descent: that is, if E is sufficiently
smooth, to iterate the gradient step

xn+1 ← xn − τ∇E(xn), (7.2)

where τ is a sufficiently small step size. If E is smooth enough, and if τ is small enough, this
algorithm is known to converge to a local optimum. But beyond the theorems, how should one
think about the gradient descent step?

Directional derivatives: the naive approach In calculus class, we’ve all learned that, when
the signal space X is a vector space Rn,

∇E(x) =


∂E
∂x1

(x)
...

∂E
∂xn

(x)

 ' 1
δt

E(x+ δt · (1, 0, . . . , 0))− E(x)
...

E(x+ δt · (0, . . . , 0, 1))− E(x)

 . (7.3)

Gradient descent then gets the intuitive explanation of “we decrease the ith coordinate of x if it is
correlated with an increase of E”. This way of seeing gradient descent is pretty easy to explain to
undergrad students, but it has two major flaws:

1. It relies on an arbitrary coordinate system, which may or may not make sense: after all, why
should images always be understood as pixel bitmaps?

2. It ingrains in the student’s mind the huge misconception that “computing a gradient” =
“computing n directional derivatives” = “costs about n + 1 evaluations of E”, in terms of
computing time. Just to make it clear: this is not true. Gradients are much cheaper to
compute than you think they are.
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Duality maps: paving the way for backpropagation A pretty general definition of the
gradient, if E is defined from a source Hilbert space (X,〈·, ·〉X) to a target one, (Y,〈·, ·〉Y ), is to see
it as the adjoint of the differential. That is, the unique linear map ∂xE = (dxE)∗ such that for
any covector a in Y ∗,

〈a,E(x+ δx)− E(x)〉Y = 〈a,dxE · δx〉Y + o(δx) = 〈∂xE · a, δx〉X + o(δx). (7.4)

In the workshop session 12, we will see how this point of view allows one to compute gradients of
arbitrary symbolic functionals E, at a cost which is equivalent to that of a handful of evaluations
of E... Whatever the dimension n of the signal space X may be.

Using X = Rn and Y = R endowed with their canonical euclidean metrics allow us to fall back on
the previous naive definition: this Hilbertian point of view has made clear the fact that a gradient
is always given with respect to a metric, as the “usual” gradient is nothing but the canonical “L2”
one.

Proximal operators But, really, if we are striving to minimize a functional E iteratively...
Couldn’t we try to use a “genuine” local minimization step such as

xn+1 ← arg min
‖t−xn‖226τ

E(t) ? (7.5)

In general, no. Most minimization tasks are difficult because of the “unkindness” of the energy
formula, not because of the unboundedness of the minimization domain. But if calculus courses
have taught us one thing, it is that hard constraints are meant to be softened: we may as well use

xn+1 ← arg min
t
E(t) + 1

2τ ‖t− xn‖
2
2 . (7.6)

Crucial to most sparsity-enforcing algorithms, this update rule is known as the L2-Proximal gradient
of E at xn. If E is differentiable at the local optimum t∗ = xn+1, one gets that

xn+1 ← xn − τ∇E(xn+1). (7.7)

A proximal step is thus nothing but an ideal, implicit gradient descent step. The L1

norm is then remarkably simple in the following sense: its proximal operator is given
by coordinate-wise soft thresholding.

Inpainting using a wavelet sparsity prior

Within Jupyter, open the file called

inverse_5_inpainting_sparsity.ipynb

and complete Exercises 1 to 5. You should now be able to see that this workshop is nothing but
an exercise in energy minimization, using a clever “gradient-like” descent scheme – just like most
of the sessions shared with the MVA M2 program, which are related to sparsity and compressed
sensing algorithms.

Beware: Due to changes in python’s default behavior, you may encounter a few er-
rors when trying to use sliced indexing. As a workaround, in your notebook and in the
nt_toolbox/perform_wavelet_transf.py file, replace end/2 with end//2 at lines 155-156.

Solutions: located as usual in your nt_solutions/inverse_5_inpainting_sparsity/ folder.
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How do we solve minimization problems?

In the last few sessions, we have put a strong focus on solving variational problems that can be
written as minimizations of energies

Ed(x) = Att(d, x)︸ ︷︷ ︸
Data attachment term

+ Reg(x),︸ ︷︷ ︸
Regularization term

(8.1)

where d is the data at hand and x is a model to optimize in a signal space X:

Sobolev denoising: EH
1

y (x) = 1
2‖y − x‖

2
2 + λ ·‖∇x‖22,2 (8.2)

Regularized TV denoising: Eεy (x) = 1
2‖y − x‖

2
2 + λ ·

∥∥∥∥√‖∇x‖22 + ε2
∥∥∥∥

1
(8.3)

Wavelet inpainting: EΨ
y (x) = 1

2‖y − ΦΨx‖22 + λ ·‖x‖1 (8.4)

TV denoising: ETV
y (x) = 1

2‖y − x‖
2
2 + λ ·‖∇x‖1,2 (8.5)

Gradient descent. As we have seen already, Sobolev denoising can be solved analytically in the
Fourier domain. Regularized TV denoising is tackled using L2-gradient descent, and the sparsity
inducing L1-prior of the wavelet inpainting algorithm is simple enough to be handled by proximal
(i.e. implicit) gradient descent. But how can we solve the TV denoising problem, which relies on a
regularizer that is neither differentiable nor simple?

Fenchel to the rescue. Thankfully, the energy ETV
y is convex and somewhat related to well-

known algebraic functions. The theory of convex duality will thus allow us to replace the primal
problem of “minimizing Ed over the vector space X” by an equivalent dual problem over the space
X∗. In this precise case, calculations will pan out very well as the differentiation operator ∇ goes
“from the regularizer to the data attachment term”: we will end up with a dual energy that is easy
to minimize using the proximal gradient technique.

Understanding convex analysis. Now, where does this “duality” trick comes from? As a
complete reference on the subject, I would strongly recommend the lectures notes of Anne Sabourin
and Pascal Bianchi on Convex Analysis, available at the following address:

www.lix.polytechnique.fr/bigdata/mathbigdata/wp-content/uploads/
2014/10/Lnotes_CvxAn_FullEn.pdf.

They go straight to the point, and are perfectly suited to the background and mindset of a French
graduate student. Keep in mind though, that the scope of this Data Science class is pretty wide
and we do not expect students to assimilate whole new theories every week... In today’s session, we
will thus focus on understanding why the formulas written in the notebook are essentially
correct, without trying to prove them in the most general cases.
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Forward-Backward method on the dual problem

Within Jupyter, open and go through the notebook called

optim_3_condat_fb_duality.ipynb.

To make sure that you understand what is going on, please have a look at the following exercises:

Exercise 1: Show that f : Rd → R is convex, proper and lower semi-continuous if and only if its
epigraph is a closed, convex, nonempty domain epi(f) of Rd+1 such that

∀ x ∈ Rd,∃ y ∈ R, (x, y) /∈ epi(f). (8.6)

Show that this is equivalent to saying that epi(f) is the intersection of the half-spaces defined by
its supporting hyperplanes.

Exercise 2: If f : Rd → R is proper and convex, we define

f∗ : u ∈ (Rd)∗ 7→ sup
x∈Rd
〈u, x〉 − f(x). (8.7)

How would you “compute” graphically f∗, the Fenchel transform or dual of f? Show that

∀ u ∈ (Rd)∗,∀ x ∈ Rd,〈u, x〉 6 f∗(u) + f(x), (Young inequality) (8.8)

with equality if and only if u ∈ ∂f(x). How do you interpret f∗ in terms of supporting hyperplanes?
Show that f∗ is always l.s.c. and convex. We will now identify (Rd)∗ with Rd through the canonical
Riesz isomorphism.

Exercise 3: A few computations:

1. Let f : x 7→ 1
2‖Ax− b‖

2
2 with A ∈ RN×N an invertible matrix. Show that

f∗(u) = 1
2
∥∥(A∗)−1u+ b

∥∥2
2 −

1
2‖b‖

2
2 . (8.9)

(Hint: remember that u ∈ ∂f(x) iff f∗(u) =〈u, x〉 − f(x).)

2. Let f : x 7→‖x‖ be a norm on Rd; as usual, it defines a dual norm ‖ · ‖∗ on (Rd)∗. Show that
the convex dual f∗ of f is in fact the indicator of the dual unit ball

f∗ = ι‖ · ‖∗61 : u 7→
{

0 if ‖u‖∗ 6 1
+∞ otherwise

. (8.10)

What is the proximal operator of f∗?

Exercise 4: Fenchel-Rockafellar theorem. Let f : R → R and g : R → R be two smooth
and strictly convex functions which go to +∞ when |x| → ∞. Note that f + g can be understood
as the difference between f and h = −g, which is concave. Show that

min
x∈R

f(x) + g(x) = min
x∈R

f(x)− h(x) = − min
u∈R∗

f∗(u)− h∗(u) = − min
u∈R∗

f∗(u) + g∗(−u), (8.11)

and that there exists a point x∗ and a slope u∗ realizing the shared optimum such that

f ′(x∗) = u∗ = h′(x∗). (8.12)

(Hint: Show that the left-hand minimum is necessarily reached at a point x where f ′(x) = h′(x).
Then, show that the right-hand minimum is necessarily reached for a slope u such that there exists
x ∈ R, u = f ′(x) = h′(x).)

Remark that if L is an invertible linear operator, then (g ◦ L)∗(u) = g∗((L∗)−1u): the Fenchel-
Rockafellar formula should now make sense.
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Solution

Exercise 1: The fact that

f is proper ⇐⇒ epi(f) is not empty, and ∀ x ∈ Rd,∃ y ∈ R, (x, y) /∈ epi(f), (8.13)
f is convex ⇐⇒ epi(f) is convex, (8.14)

is a direct consequence of the definitions. Let’s show that

f is l.s.c. ⇐⇒ epi(f) is closed. (8.15)

Direct implication: Assume that f is l.s.c., and take a sequence
(
(xn, yn)

)
n∈N of points in

epi(f) which converges towards (x∞, y∞) ∈ Rd × R. Then, notice that

∀n ∈ N, yn > f(xn) and yn −→ y∞, xn −→ x∞. (8.16)

Hence, as f is l.s.c.,

y∞ > lim inf yn > lim inf f(xn) > f(x∞), so that (x∞, y∞) ∈ epi(f). (8.17)

The epigraph of f is thus a closed set.

Conversely: Assume that f is not l.s.c.: There exists xn → x∞ such that lim inf f(xn) < f(x∞).
If we extract a subsequence xσ(n) such that f(xσ(n)) → lim inf f(xn), we can then remark that
(xσ(n),f(xσ(n))) is a sequence of epi(f) which converges towards a point (x∞, lim inf f(xn)) which is
not in epi(f).

Relationship with supporting hyperplanes: For any “slope” covector u ∈ (Rd)∗, we define

bu = max
{
b ∈ R, ∀ x ∈ Rd, f(x) >〈u, x〉+ b

}
(8.18)

= sup
{
f(x)−〈u, x〉 , x ∈ Rd

}
. (8.19)

The supporting hyperplane of f with slope u is no one but the graph of the function x 7→〈u, x〉+ bu
which defines a half-space

Hu =
{

(x, y) ∈ Rd × R, y > 〈u, x〉+ bu
}
. (8.20)

According to the definition of bu, we know that

epi(f) ⊂
⋂

u∈(Rd)∗
Hu. (8.21)

Conversely, assume that (x, y) /∈ epi(f), i.e. y < f(x). Since epi(f) is convex, closed and non-empty,
we know that there exists a unique orthogonal projection (xp, yp) of (x, y) onto epi](f) – the
unique minimizer of the strictly convex function (s, t) 7→‖(s, t)− (x, y)‖2 on the set epi(f). Since
the latter is closed, we also know that (xp, yp) 6= (x, y).

Then, if we note (v, w) = (xp − x, yp − y), the convexity of epi(f) ensures that{
(s, t) ∈ Rd × R, 〈(v, w) , (s, t)〉 =

〈
(v, w) , 1

2 (x+ a, y + b)
〉︸ ︷︷ ︸

c

}
(8.22)

=
{

(s, t) ∈ Rd × R, w t = c − 〈v, s〉
〉}

(8.23)

is a strictly separating hyperplane between epi(f) and (x, y).
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Then, there are two cases. If w 6= 0, we can go and conclude that since{
(x, y) ∈ Rd × R, y >

〈
− v
w
, x
〉

+ c

w

}
(8.24)

separates epi(f) and (x, y), so must the optimal hyperplane H−v/w. Hence, (x, y) /∈
⋂
Hu.

Otherwise, if w = 0, this means that the separating hyperplane defined eq. (8.23) is vertical, with
epi(f) purely on one side of the separation. Since epi(f) is convex and points upwards, we can
then use eq. (8.6) to find a “non-vertical” separating slope, which can be encoded as a supporting
half-space Hu, as we link up with the previous argument.

N.B.: This result is nothing but the classical characterization of closed convex sets in Banach
spaces (consequence of the Hahn-Banach theorem), in the special setting of optimization where
there is one privileged “vertical” direction. This anisotropy burdens a bit the proofs (w 6= 0, etc...):
that’s life.

Exercise 2: Surprise surprise, the “optimal” offset coefficient bu defined in the correction of
Exercise 1 actually’s got a name: it is no one but −f∗(u). Here is the sketch you should have in
mind when thinking about the Fenchel transform:

Figure 8.1: Graphical computation of the Fenchel transform f∗(s) – with u = s, here. Image taken
from the very nice website www.onmyphd.com/?p=legendre.fenchel.transform.

The Young inequality is a direct consequence of the definition of the Fenchel transform as a
supremum; then, we know that for all u ∈ (Rd)∗, x ∈ Rd, we have

〈u, x〉 − f(x) = f∗(u) ⇐⇒ ∀ y ∈ Rd, 〈u, x〉 − f(x) > 〈u, y〉 − f(y) (8.25)
⇐⇒ ∀ y ∈ Rd, f(y) > f(x) + 〈u, y − x〉 (8.26)
⇐⇒ u is a subdifferential of f at point x. (8.27)



Solution 55

Furthermore, as a supremum of l.s.c. and convex functions of u (the linear forms u 7→ 〈u, x〉− f(x)),
f∗ is also l.s.c. and convex: with respect to epigraphs, the supremum acts like the intersection
of sets and closedness, convexity are two properties which are stable by this operator.

Exercise 3: For x0 ∈ Rd, the gradient of the quadratic function f : x 7→ 1
2‖Ax− b‖

2 is given by

∂xf(x0) = A? (Ax0 − b) = A?Ax0 −A?b. (8.28)

Since ∂xf is an invertible mapping from RN to RN , the convex dual of f is easy to compute using
the equality case in Young’s inequality: if u ∈ (Rd)∗ is written as A? (Ax− b), we know that

f∗(u) = 〈u, x〉 − 1
2‖Ax− b‖

2
2 (8.29)

=
〈
u,A−1((A∗)−1u+ b)

〉
− 1

2
∥∥(A∗)−1u

∥∥2
2 (8.30)

=
〈
(A∗)−1u, (A∗)−1u+ b

〉
− 1

2
∥∥(A∗)−1u

∥∥2
2 (8.31)

= 1
2
∥∥(A∗)−1u+ b

∥∥2
2 − 1

2‖b‖
2
2 . (8.32)

Question 2: The norm’s convex dual is defined as the supremum

f∗(u) = sup
x∈Rd

〈u, x〉 − ‖x‖ . (8.33)

Note that we do not ask for the norm here to be the L2 norm associated with the canonical scalar
product. To compute f∗(u), we must distinguish two cases:

1. If ‖u‖∗ 6 1, we know that the value of f∗(u) is bounded above by zero.
Since 〈u, 0〉 −‖0‖ = 0, this maximal value is reached and f∗(u) = 0.

2. If‖u‖∗ > 1, then by definition of the supremum, there exists a vector x0 such that〈u, x0〉 >‖x0‖.
Taking x = λx0 with λ→ +∞ in the conjugate’s definition, we show that f∗(u) = +∞.

The convex dual of f is thus no one but the indicator ι‖ · ‖∗61 of the dual unit ball associated to f .
Since

proxf∗(u) = arg min
v∈(Rd)∗

ι‖ · ‖∗61(v) + 1
2‖u− v‖

2
2 = arg min

‖v‖∗61
‖u− v‖22 , (8.34)

we see that the proximal operator of f∗ (which is always defined with respect to a descent metric,
just like a gradient – here, the L2 norm) is the orthogonal projector onto the unit ball
associated to the dual norm ‖ · ‖∗ of f =‖ · ‖.

Exercise 4: Since f + g is a strictly convex function defined on the convex set R, it reaches its
minimum at exactly one point x∗ ∈ R. Then, since f + g is smooth, we know that

f ′(x∗) + g′(x∗) = 0 i.e. f ′(x∗) = h′(x∗). (8.35)

We must now show that this shared value of the derivative, that we denote u∗, is precisely the
solution of the dual optimization problem minu∈R∗ f∗(u) − h∗(u). To keep track of all the
variables involved, please make a sketch with, say, two parabolas f and h!

Since f and h are both smooth, strictly convex/concave and reach their respective mini-
mum/maximum, their derivatives f ′ and h′ are increasing/decreasing functions from R to open
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intervals If and Ih with a non empty intersection (containing, at the very least, a neighborhood of
the origin 0). We can thus define the inverse bijections

(f ′)−1 : If → R and (h′)−1 : Ih → R (8.36)

which are respectively increasing and decreasing functions of the dual variable u. Then, according
to Exercise 2, we know that

f∗ = f ◦ (f ′)−1 and h∗ = h ◦ (h′)−1, (8.37)

so that

f∗ − h∗ : u 7→
{
f ◦ (f ′)−1(u) + h ◦ (h′)−1(u) if u ∈ If ∩ Ih

+∞ otherwise
. (8.38)

Remark that u∗ ∈ If ∩ Ih.
Let’s take u ∈ If ∩ Ih which is not equal to u∗, and let’s show that

(f∗ − h∗)(u) > (f∗ − h∗)(u∗). (8.39)

We denote x1 = (f ′)−1(u) and x2 = (h′)−1(u) the abscissa involved in the computation of
(f∗ − h∗)(u); since (f ′)−1 and (h′)−1 are increasing/decreasing, u∗ is the only point such that
“x1 = x2”. Hence, since u 6= u∗, we know that x1 6= x2.

According to Exercise 2, we can compute

f∗(u) = 〈u, x1〉 − f(x1) and h∗(u) = 〈u, x2〉 − h(x2). (8.40)

That is, as we know that u = f ′(x1) = h′(x2),

(f∗ − h∗)(u) = h(x2)− f(x1) − 〈u, x2 − x1〉 (8.41)
and (f∗ − h∗)(u∗) = h(x∗)− f(x∗) + 〈u∗, x∗ − x∗〉 . (8.42)

Therefore, we have

(f∗ − h∗)(u)− (f∗ − h∗)(u∗) = f(x∗)− f(x1) + h(x2)− h(x∗) +〈u, x1 − x2〉 (8.43)
= f(x∗)− f(x1) +〈u, x1 − x∗〉︸ ︷︷ ︸

> 0 since f is stricly convex

+h(x2)− h(x∗) +〈u, x∗ − x2〉︸ ︷︷ ︸
> 0 since h is stricly concave

. (8.44)

Hence why
(f∗ − h∗)(u) > (f∗ − h∗)(u∗). (8.45)



Part III

Machine-learning and optimal
transport

57





SESSION 9 Introduction to machine learning

How do we train algorithms?

Vocabulary. We consider the general setting of supervised learning: given a set of observa-
tions (xi, yi), we would like to learn a model fw, parametrized by a vector w, such that fw(xi) ≈ yi:
the xi’s are the data points, and the yi’s are the labels. If the yi’s were continuous function
values, we would be tackling a regression problem. In this workshop session, however, we’re
interested in a discrete classification problem where the yi’s are labels living in an arbitrary
set {blue, yellow, red} identified for mathematical convenience with the integer set {1, 2, 3} - or
{0, 1, 2} to fit python’s indexing conventions.

Notations. In the equations written below, xi ∈ R2 and yi ∈ {1, . . . ,K} = {1, 2, 3} will denote
generic data points and labels; x and y will be generic variables of deterministic functions, whereas
the capital letters X and Y denote the observed training samples (xi)16i6I and (yi)16i6I .

A simple probabilistic setting. In this workshop, we will assume that the xi’s are indepen-
dent identically distributed variables, with yi following a law gxi that we wish to regress.
At the very least, we will strive to compute the maximum likelihood estimator

arg max
y

gxi(y), approximated by the parametric function fw(xi) (9.1)

and then assume a “signal+noise” generative process: yi ∼ gxi ' N (fw(xi), σ2) for instance.

A deterministic optimization problem. We propose to learn the parameters w of the model
through the minimization of a loss function of the form

CostX,Y (w) =
I∑
i=1

Att(fw(xi), yi) + Reg(w). (9.2)

The optimal set of parameters minimizes the sum of a data attachment term
∑
iAtt(fw(xi), yi)

and of an explicit regularization term Reg(w). Choosing relevant formulas for “Att” and “Reg”
is a critical modelling step: this introductory session is dedicated to the review of a handful of
popular strategies on a toy dataset. Remark that our problem is equivalent to the maximization of

exp
(
− CostX,Y (w)

)
= exp

(
− Reg(w)

)
·
∏
i

exp
(
−Att(fw(xi), yi)

)
(9.3)

which can be written, up to a multiplicative renormalization constant, as a conditional likelihood

P(w, Y | X) = P(w) ·
∏
i

P(yi | w, xi). (9.4)

Quadratic costs and Gaussian models. If both Reg and Att are quadratic functions,
minimizing Cost is therefore akin to computing a maximum a posteriori estimation of w for a
Gaussian generative model, which explains the empirical data distribution as follows:

– The input data X is a deterministic input.

– The model’s parameters w are drawn independently of X, according to a fixed Gaussian
distribution.

– The “clean” values fw(xi) are computed independently from each other, before corruption
by an additive Gaussian noise results in the observed values yi.
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A simplistic linear regression

The simplest model of them all is to view yi as a real-valued function of xi, and to fit a linear
model of parameters W ∈ R2, b ∈ R by using

fW,b(x) = 〈W,x〉+ b (9.5)

with no regularization and an L2 attachment term. That is, we minimize

CostX,Y (W, b) = 1
2I
∑
i

‖fW,b(xi)− yi‖2. (9.6)

This minimization problem can be solved explicitely using the pseudoinverse... But for the sake
of pedagogy, note that we could also use gradient descent on the vector w = (W [1],W [2], b)!
As displayed in Figure 9.1, the results of this classification method are pretty poor. This is not
surprising: as our regression model treats the class labelling x 7→ y(x) as a real-valued function, it
induces an unbearable bias with respect to the classes’ ordering.

Training a softmax linear classifier

Embedding linear scores in a space of probability measures. To alleviate this problem,
we propose to use a softmax linear classifier that allows us to handle labels as discrete variables.
We still compute linear scores, but now interpret them as the unnormalized log-probabilities of
each class, without relying on any arbitrary ordering of the labels.

If K is the number of class, the trainable parameters of our model are a weight matrix W of size
K ×D (in the math convention, where vectors are columns... and not lines, as in python), and an
offset vector b of size K. The linear scores s ∈ RK at a generic location x ∈ RD are computed as

s = Wx+ b (9.7)

and we decide to interpret those generic “class scores” as un-normalized log probabilities.
That is, given s = (s[1], . . . , s[K]) a given score vector, we assume that

Ps[k] = P(class = k | s) = exp(s[k])∑K
j=1 exp(s[j])

. (9.8)

The equation above allows us to interpret fw(xi) as a probability measure on the discrete space of
labels {1, 2, . . . ,K}. The exponential in the formula is chosen for convenience, as it allows us to
represent a wide range of positive probabilities with scores that are relatively close to each other.

This trick allows us to pass from scalar-valued scores to probabilities on the set of labels. It is clever,
as we can now use standard pseudo-distances between probability measures, which do not rely on
any parametrization of the set of labels.

Using a standard (pseudo-)metric structure on the space of probability measures.
Now, what kind of data attachment term Att(fw(xi), yi) could we use to compare the “generated”
fw(xi) ' PWxi+b with the “deterministic” empiric law yi, identified with the measure δyi such that

Pδyi (class = k) =
{

1 if k = yi

0 otherwise
? (9.9)
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Information Theory to the rescue. Since {1, 2, . . . ,K} is a label space deprived of any
relevant metric structure, a good choice is the cross-entropy or Kullback-Leibler divergence

KL(δy || Ps) =
∫

log
(
dδy
dPs

)
dδy = − log(Ps[y]) = − log

(
exp(s[y])∑K
j=1 exp(s[j])

)
(9.10)

since δy is completely localized on y. Remember from the course on information theory and entropic
coding that the KL-divergence between two probability measures µ and ν is given by

KL(µ || ν) = «
∫

log
(

1
dν

)
dµ︸ ︷︷ ︸

Perf. of a ν-code on µ

−
∫

log
(

1
dµ

)
dµ︸ ︷︷ ︸

Perf. of an optimal µ-code on µ

» =
∫

log
(
dµ
dν

)
dµ (9.11)

and measures “how well a ν-code can be used to encode µ”. It induces a data attachment formula
which is not symmetric with respect to the variables δy and Ps, but is nonnegative, differentiable,
and null iff Ps = δy. On top of this, we propose to use an L2 quadratic regularization on W :
denoting si = Wxi + b, the final objective function can thus be written as

CostX,Y (W, b) = −1
I

∑
i

log
(

exp(si[yi])∑
j exp(si[j])

)
+ ε

2 trace(WTW ). (9.12)

Remember: The method presented above, kown as (Linear) Logistic regression (because it
is linear regression on the log-probabilities), is the baseline tool for classification. It treats class
values as labels, and does not rely on any (arbitrary) embedding of the set of labels in a metric
space.

Training a linear SoftMargin-SVM

Another popular strategy: using a Support Vector Machine loss. In its simplest form, the mechanism
that computes the scores vector s is linear, just as in the softmax classifier above:

s = Wx+ b. (9.13)

However, instead of using a probabilistic interpretation, we focus on geometry and interpret the
collection of argmax level sets in R2

{s[1] > s[2] and s[3]}, {s[2] > s[1] and s[3]}, {s[3] > s[1] and s[2]} (9.14)

as a partition whose margins should separate the point clouds as well as possible. More
precisely, we wish to minimize

CostX,Y (W, b) =
I∑
i=1

K∑
k=1

1k 6=yi ·
(
si[k]− (si[yi]−∆)

)+ + ε

2 trace(WTW ) (9.15)

where si = Wxi + b, and where z+ = max(0, z) denotes the positive part of a real number z. This
formula penalizes W and b if they assign to “wrong” classes k 6= yi a score si[k] which is nearly or
clearly superior to that of the “correct” class si[yi], with a detection margin parameter ∆.
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Training SVMs with different kernels

Introducing nonlinear features. Both methods presented above look pretty basic, as they rely
on linear scores. Thankfully, we can tweak those linear algorithms to tackle nonlinear problems
using the kernel trick. The idea is to embed the data in a higher dimensional feature space, where
a linear classifier may achieve better performance. Surprisingly, there exists an efficient way to work
implicitly with high-dimensional embeddings. Indeed, since the classification algorithms presented
above are purely geometric, they can be expressed in terms of the Gram matrix of the point
cloud

Gi,j = 〈xi, yj〉. (9.16)

Consequently, to work with an embedding ϕ, there’s no need to compute the high-dimensional
vectors ϕ(x): having access to the Kernel matrix

Ki,j = 〈ϕ(xi), ϕ(yj)〉 = k(xi, yj) (9.17)

is enough. Then, Mercer’s theorem gives necessary and sufficient conditions on the kernel
function k to be able to interpret the Kernel matrix as a “mapped” Gram matrix. In the simple
case of translation invariant kernels k(xi, yj) = k(xi − yj), these conditions read as

∀ ω ∈ RD, k̂(ω) > 0, (9.18)

that is, “the Fourier transform of k should be real and positive”. Taking all of this into account,
a standard approach to classification is to use SVM or logistic regression (implemented
in terms of the Gram matrix) with a custom kernel chosen with respect to the data.

Remember: As shown in Figure 9.1, the RBF (Gaussian) kernel SVM pretty much solves toy
examples for a wide range of values of the parameters. Being a robust, well-understood and efficient
tool, it is now a standard baseline in the machine learning industry: a popular “next step” after
linear methods.

Training a 2-layer perceptron

The Neural Networks fantasy. In the previous sections, we’ve seen how to train probabilistic
models and soft-margin classifiers. A third popular strategy is to try to learn the optimal program
for a given classification task. Instead of optimizing in, say, the well-delimited space of decision
hyperplanes, the ambition is to search our decision rule fw : xi 7→ fw(xi) ' yi in a much
wider (and wilder) space of computer programs.

Making a naive tree search in the space of Turing machines / λ-expressions is obviously intractable:
it is a combinatorial problem with crazy high complexity - without even speaking of the classical
CS paradoxes! In order to link up with efficient optimization routines, it is thus necessary to restrict
ourselves to continuously parametrized and finite operations: given elementary computational
bricks

F iwi : RNi−1 7→ RNi (9.19)
and a fixed program depth D, we’ll look for the optimal parameters w = (w1, . . . , wD) of a
classification program encoded as a composition

fw = FDwD ◦ · · · ◦ F
2
w2
◦ F 1

w1
. (9.20)
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Which kind of elementary block should we use ? From a computational point of view, the
simplest choice would be to use linear operators (affine, really). That is, to define wi = (Wi, bi) ∈
RNi×Ni−1 × RNi and use

F iwi : x 7→Wix+ bi. (9.21)

Introducing non-linearities. Problem is: the composition of two affine functions is still an
affine function... If we concatenate linear operators, increasing the program depth D doesn’t help
us to explore a wider set of programs. In order to build richer models, we thus have to “break”
the linearity of our atomic operators, and use

F iwi : x 7→ σ(Wix+ bi), (9.22)

where σ is a pointwise non-linear function. A popular choice is to use the cheap REctified Linear
Unit, or positive part

σ : x 7→ x+ = max(0, x). (9.23)

The elementary operators F iWi,bi
defined above are both generic and easy to work with. We haven’t

made any sparsity assumption on the matrix Wi: a priori, the output coordinates depend of all the
input coordinates. In the literature, these elementary bricks are thus known as fully connected
layers.

Putting all of this into practice. The next workshop session will be dedicated to this
“algorithmic” stance on machine learning: we will investigate its potential for image processing
applications alongside its limits. For today, let’s just see “how it’s done” on a simplistic 2D-dataset.
We implement a gradient descent optimization on the parameters of a 2-layer perceptron, that
is, of a non-linear operator

fw = F 2
W2,b2 ◦ F

1
W1,b1 (9.24)

where

F 1
W1,b1 : x ∈ R2 7→ (W1x+ b1)+ ∈ RH and F 2

W2,b2 : x ∈ RH 7→ (W2x+ b2) ∈ RK . (9.25)

Non-linear generation of probabilistic scores. Here, H = 100 is the number of “hidden
units” in the intermediate vector space RN1 , and K = 3 is the number of classes. Since fw(xi) ∈ RK
can be interpreted as a scores vector, we’ll use the “softmax+KL” discrepancy discussed in the
section on Logistic regression, and interpret the output of our model as a vector of un-normalized
log-probabilities. All in all, denoting si = fw(xi), we strive to minimize

CostX,Y (W1, b1,W2, b2) = −1
I

∑
i

log
(

exp(si[yi])∑
j exp(si[j])

)
+ ε

2 trace(WT
1 W1 +WT

2 W2); (9.26)

A marketable theory. Since the 60’s (one layer) and 80’s (multilayer), these algorithmic models
are known as multilayer perceptrons. A name which is not very relatable... As these stacked
data flows are (very) loosely related to structures present in the cortex of mammals, tunable
programs fw = FD ◦ · · · ◦ F 1 are now colloquially referred to as neural networks. In the next
workshop session, we will present their extensions to higher dimensional problems (esp. image
classification), recently marketed as deep learning in the mass media.
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(a) Linear regression. (b) Logistic regression.

(c) Kernel-SVM (RBF kernel). (d) 2-layer perceptron.

Figure 9.1: Eventual decision rules presented in the notebook. The synthetic dataset
(made out of three classes Blue-Yellow-Red) is taken from Andrej Karpathy’s CS231n class,
cs231n.github.io/neural-networks-case-study/, alongside the examples (b) and (d).

(a) Straightforward linear regression performs extremely poorly, as it handles the labels
0 (blue), 1 (yellow) and 2 (red) as values of a linear function to regress.
(b) Logistic regression embeds (linear) features into a space of probability measures, before using
the Kullback-Leibler divergence as a standard data attachment formula. The eventual decision rule
is therefore invariant wrt. the set of labels, and does not depend on any arbitrary ordering.
(c) The kernel trick allows us to use non-linear features in a geometric algorithm, be it a logistic
regression or a support vector machine.
(d) Perceptrons strive to find the correct non-linear scores function in a continuous space of
programs, implicitely encoded in the structure of a “neural” network.
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Conclusion

Overview. Today, we presented a handful of strategies to fit trainable models fw to a
supervised dataset (xi, yi). Interestingly, even though these algorithms are close to each other from
a practical point of view (a one-layer perceptron is basically logistic regression...), they can be
interpreted from very different viewpoints! In just one workshop session, we introduced:

– Probabilistic modeling: Logistic regression, Gaussian mixture models...
– Geometric classification: SVMs, k-means++...
– Algorithmic regression: Perceptrons, CNNs, RNNs...

Model evalutation. In the notebook, we asserted visually the relevance of our classifiers. But
as soon as the dimension of our data points exceeds 3, this becomes intractable! The usual safeguard
here is to split the dataset into a training set, used by the optimization loop, and a test set
used to compute a final classification score. If both subsets are independent (and if one does not
fine-tune the hyper-parameters too much), this protocol allows us to get an independent measure
of the quality of our trained model.

How can machine learning algorithms generalize on unobserved data? The data sci-
entist’s fiercest enemy is overfit: when a model has memorized the training set well, without
actually learning any generalizable decision rule. This can for instance happen if the trained
model fw converges towards the “hash table” function

fw −→
∑

i∈Training
yi · 1{xi}. (9.27)

Putting the right amount of prior into a model. To prevent this from happening, the key
ingredient is the regularization prior encoded in our algorithm. It should be strong enough to
filter out the acquisition noise in the dataset, and small enough to let us take advantage of every
bit of relevant information present in the training set.

Balancing this regularization strength is easier said than done. Think, for instance, of
linear models: As the classifier is constrained to being linear, we may naively assume that it cannot
learn a gibberish decision rule... But unfortunately, this intuition turns out to be wrong if the
dimension of the input vector x is too large! On images for instance, a linear classifier can easily
overfit on the value of a single pixel – or any other meaningless decision rule – if it happens to
“separate” the training set well enough.

Quantifying the strength of the regularization prior (compared to, say, the signal to
noise ratio or the number of training samples) is a difficult task, and still an open
problem for neural networks. In the algorithms that we presented today, the regularization is
encoded in the following elements:

– Linear logistic regression and SVMs: dimensionality of the input space + explicit L2

regularization prior on the linear scores matrix W . The latter may seem innocuous; but
remember that if the canonical basis used to encode your data does not make sense with
respect to your problem, neither does the L2 norm! One could, at the very least, think of
replacing it with another euclidean metric on the space of matrices.

– Kernel methods: intrinsic dimensionality of the dataset with respect to the kernel used. For
instance, a large kernel width blurs the dataset and reduces the risk of overfit.

– Neural networks: implicit combination of the model’s architecture + the L2 (stochastic)
gradient descent scheme used to optimize its weights.



66 Chapter 9. Introduction to machine learning



SESSION 10 Automatic Differentiation

Automatic differentiation for applied mathematicians

In recent years, a considerable effort has been put into the development of modern scientific
computing libraries, also known as autodiff frameworks. As of 2017, the most famous in the data
science community are Theano (RIP), TensorFlow and PyTorch. Now, relative to the curriculum
of math graduate students, those computational tools rely on low-level software engineering... But
they can be so useful! Indeed, they now allow researchers to compute efficiently, on GPUs, the
derivatives of any symbolic computational graph written in python.

To illustrate the internal design of these recent libraries, we now dedicate a whole workshop session
to the step-by-step computation and differentiation of the classical kernel norm:

H(q, p) = 1
2

N∑
i,j=1

k(qi − qj)
〈
pi, pj

〉
RD (10.1)

= 1
2 〈p,Kq,qp〉RND with (Kq,q)i,j = k(qi − qj), (10.2)

where (qi) and (pi) are encoded as N -by-D float arrays. By the end of this session, hopefully,
you should have a clear understanding of what is (and what is not) possible with an automatic
differentiation framework.

N.B.: Those pages have been adapted from the documentation of the KeOps library, that I am
currently writing with Benjamin Charlier and Joan Alexis Glaunès – www.kernel-operations.io.

Backpropagation 101

Finite differences are not the solution. Let F : Rn → R be a differentiable function
defined as a symbolic computer program. Can we compute efficiently the (value,gradient) pair
(F (x0), ∂xF (x0)) at any given location x0 ∈ Rn?

A naive approach, the so-called finite differences scheme, would be to use a Taylor expansion of F
around x0 and write, for δt sufficiently small,

∂x1F (x0)
∂x2F (x0)

...
∂xnF (x0)

 ' 1
δt


F (x0 + δt · (1, 0, 0, . . . , 0))− F (x0)
F (x0 + δt · (0, 1, 0, . . . , 0))− F (x0)

...
F (x0 + δt · (0, 0, 0, . . . , 1))− F (x0)

 . (10.3)

This idea is simple to implement. But it also requires n+1 evaluations of the function F to compute
a single gradient vector! As soon as the dimension of the input space exceeds 10-100, this is not
tractable: Just like inverting a full matrix A is not a sensible way of solving the linear system
“Ax = b”, one should not use finite differences – or any equivalent forward scheme – to compute a
gradient.

67
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Gradients between Hilbert spaces. Thankfully, there exists an efficient way of computing
the gradients of real-valued functions: the reverse accumulation scheme. Relying on a backward pass
through the computational graph, this useful algorithm has recently been popularized under the
name of “backpropagation” and lies at the core of every Deep Learning framework. To understand
it, consider the following definition of (generalized) gradients between Hilbert spaces:
Définition 10.1. Let (X, 〈 · , · 〉X) and (Y, 〈 · , · 〉Y ) be two Hilbert spaces, and let F : X → Y be
a continuously differentiable function between them.
Let also x0 ∈ X be an input position and α ∈ Y ∗ be a linear form on Y , which we identify with a
vector a ∈ Y through the Riesz theorem.
Then, for all increment δx ∈ X, we have

〈α, F (x0 + δx)〉 = 〈α, F (x0)〉 + 〈 α, dxF (x0) · δx 〉 + o(‖δx‖) (10.4)
= 〈α, F (x0)〉 + 〈 (dxF )∗(x0) · α, δx 〉 + o(‖δx‖) (10.5)
= 〈a, F (x0)〉Y + 〈 ∂xF (x0) · a, δx 〉X + o(‖δx‖), (10.6)

where we identify the adjoint of the differential (dxF )∗(x0) : Y ∗ → X∗ with a continuous linear
map ∂xF (x0) : Y → X through the Riesz theorem. We say that the latter is the generalized
gradient of F at x0, with respect to the Hilbertian structures of X and Y .

If X and Y are respectively equal to Rn and R endowed with their canonical L2-Euclidean
structures, the matrix of ∂xF (x0) in the canonical basis is no one but the vector ∇xF (x0) of
directional derivatives.

Chain rule for gradients. This Hilbertian definition of the gradient has two major advantages
over the “vector of derivatives” one. First, it stresses the fact that a gradient is an object which is
defined with respect to a metric structure, not a basis. As data scientists often work with spaces of
signals on which the L2 metric makes very little sense, this is important.

Second, it allows us to compose gradients without reserve. Indeed, if X, Y , Z are three Hilbert
spaces, and if F = H ◦ G with G : X → Y and H : Y → Z, then for all x0 ∈ X, the chain rule
asserts that

dxF (x0) = dyH(G(x0)) ◦ dxG(x0), (10.7)

so that

[dxF (x0)]∗ = [dxG(x0)]∗ ◦ [dyH(G(x0))]∗ (10.8)
i.e. ∂xF (x0) = ∂xG(x0) ◦ ∂yH(G(x0)). (10.9)

Backpropagation. Suppose that the function of interest F : Rn → R is defined as a composition
F = Fp ◦ · · · ◦ F2 ◦ F1 of elementary functions Fi : RNi−1 → RNi where N0 = n and Np = 1:

Rn = RN0 RN1 RN2 · · · RNp = R
F1 F2 · · · Fp

To keep the notations simple, we will assume that all the input and output spaces RNi are endowed
with their canonical L2-Euclidean metrics. Remember that we are interested in computing, at an
arbitrary location x0 ∈ Rn, the gradient

∂xF (x0) : R→ Rn, (10.10)
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which is a linear map that is entirely determined by the value of the “gradient vector”

∂xF (x0) · 1 = ∂xF1(x0) ◦ ∂xF2(F1(x0)) ◦ · · · ◦ ∂xFp(Fp−1(· · · (F1(x0))) ) · 1 (10.11)
= ∂xF1(x0) ◦ ∂xF2( x1 ) ◦ · · · ◦ ∂xFp( xp−1 ) · 1 (10.12)

where the xi = Fi ◦ · · · ◦ F1(x) are nothing but the intermediate results in the computation of
xp = F (x0).

We then assume that the forward and backward operators

Fi : RNi−1 → RNi
x 7→ Fi(x) (10.13)

and ∂xFi : RNi−1 × RNi → RNi−1

(x0, a) 7→ ∂xFi(x0) · a (10.14)

are known and encoded as computer programs. According to Eq. (10.12), it is thus possible
to compute both F (x0) and ∂xF (x0) with a forward-backward pass through the following diagram:

Rn RN0 RN1 RN2 · · · RNp R

x0 x0 x1 x2 · · · xp F (x0)

∂xF (x0) · 1 x∗0 x∗1 x∗2 · · · x∗p 1

Rn RN0 RN1 RN2 · · · RNp R

input F1 F2 · · · Fp output

output ∂xF1 ∂xF2 · · · ∂xFp input

∈ ∈ ∈ ∈ ∈ ∈
∈ ∈ ∈ ∈ ∈ ∈

The backpropagation algorithm can be cut in two steps that correspond to the two lines of the
above diagram:

1. Starting from x0 ∈ Rn = RN0 , compute and store in memory the successive vectors
xi ∈ RNi . The last one, xp ∈ R, is equal to the value of the objective F (x0).

2. Starting from the canonical value of x∗p = 1 ∈ R, compute the successive dual vectors

x∗i = ∂xFi+1(xi) · x∗i+1. (10.15)

The last one, x∗0 ∈ Rn, is equal to the gradient ∇F (x0) = ∂xF (x0) · 1.

Implementation and performances. The generalization of this procedure to any acyclic
“forward” computational graph is straightforward. Hence, provided that the forward and backward
operators of Eq. (10.13-10.14) are pre-implemented, we can compute automatically the gradient of
any symbolic procedure that is written as a succession of elementary vector operations, the Fi’s.

Consequently, Deep Learning libraries rely on three core modules: a numpy-like set of low-level
GPU routines; a high-level graph manipulation API; a comprehensive list of operations (forward
and backward) provided to end-users.

Crucially, the backwards of the usual operations are seldom more costly than 4-5 applications
of the corresponding forward operators. Ergo, if one has enough memory available to store the
intermediate results during the forward pass, the backpropatation algorithm is an automatic
and time-effective way of computing arbitrary gradients.
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Autodiff is easy to use

A minimal working example. Let us illustrate the underlying mechanics of PyTorch – a
Deep Learning library – in a simple case: the computation of the kernel squared norm defined
Eq. (10.1-10.2) with a Gaussian kernel of deviation s > 0:

k : RD × RD → R
(x, y) 7→ e−‖x−y‖

2
2 / s

2 . (10.16)

1 import torch # GPU + autodiff library
2 from torchviz import make_dot # See github.com/szagoruyko/pytorchviz
3

4 # With PyTorch, using the GPU is that simple:
5 use_gpu = torch.cuda.is_available()
6 dtype = torch.cuda.FloatTensor if use_gpu else torch.FloatTensor
7 # Under the hood, this flag determines the backend used for
8 # forward and backward operations, which have all been
9 # implemented both in pure CPU and in GPU (CUDA) code.

10

11 # Step 1: Define numerical tensors (from scratch or numpy) --------
12 N = 1000; D = 3 ; # Work with clouds of 1,000 points in 3D
13 # Generate arbitrary arrays on the host (CPU) or device (GPU):
14 q = torch.linspace( 0, 5, N*D ).type(dtype).view(N,D)
15 p = torch.linspace( 3, 6, N*D ).type(dtype).view(N,D)
16 s = torch.Tensor( [2.5] ).type(dtype)
17

18 # Step 2: Tell PyTorch to keep track of q and p's children --------
19 # In this demo, we won't try to fine tune the deformation model,
20 # so we do not need any derivative with respect to s:
21 q.requires_grad = True
22 p.requires_grad = True
23

24 # Step 3: Actual computations -------------------------------------
25 # Every PyTorch instruction is executed on-the-fly, but the graph
26 # API 'torch.autograd' keeps track of the operations and stores in
27 # memory the intermediate results needed for the backward pass.
28 q_i = q[:,None,:] # shape (N,D) -> (N,1,D)
29 q_j = q[None,:,:] # shape (N,D) -> (1,N,D)
30 sqd = torch.sum( (q_i - q_j)**2 , 2 ) # |q_i-q_j|^2
31 K_qq = torch.exp( - sqd / (s**2) ) # Gaussian kernel
32 v = K_qq @ p # matrix multiplication. (N,N)@(N,D) = (N,D)
33

34 # Finally, compute the Hamiltonian H(q,p):
35 H = .5 * torch.dot( p.view(-1), v.view(-1) ) # .5*<p,v>
36

37 # Display -- see next figure.
38 print(H); make_dot(H, {'q':q, 'p':p, 's':s}).render(view=True)
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For the sake of completeness, we provide here a full, verbose working example: its header is bound
to get deprecated sooner or later. But the core of the procedure, the lines related to the kernel
norm formula, those are here to stay. From a mathematical point of view, these symbolic python
instructions define a computational graph that can be used to differentiate H(q, p) with respect to
q and p.

Encoding a formula in the computer’s memory In the figure below, we display the
computational history of the variable ‘H’ as it is understood by PyTorch – it is stored in the
‘H.grad_fn’ attribute: have a look! This acyclic graph is the exact equivalent of the second
“backward” line of the diagram presented page 69: Every white node stands for a backward operator
∂xFi : (xi, x∗i+1) 7→ x∗i . The green leave is the first covariable x∗p ∈ R, the “gradient with respect to
the output” which is initialized to 1; the red leaves are the covariables x∗0 in which the gradients are
to be accumulated; and the blue ones are the stored values xi computed during the forward pass.
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Computing gradients for free. Thanks to the groundwork done by PyTorch’s developers,
computing gradients with Python is that simple:

39 # N.B.: Higher-order derivatives are also supported:
40 # just use the create_graph=True optional argument of 'grad'
41 grad_q, grad_p = torch.autograd.grad( H, [q,p] )
42 print(grad_q.shape, grad_p.shape)

As we will show in the next few sessions, this new feature provided by autodiff frameworks is a game
changer for applied mathematicians. Before going any further, I thus recommend to go through the
PyTorch tutorial available at the following address:

pytorch.org/tutorials/beginner/pytorch_with_examples.html

Bonus track: linking custom CUDA routines with PyTorch

As an appendix to this session dedicated to automatic differentiation, let me now describe the proper
way of extending the library by linking custom CUDA routines to PyTorch symbolic instructions.
This will allow us to dive into the framework’s internal behaviors and paradigms, and thus get a
clear understanding of its limits.

Why Memory usage. Out of the box, PyTorch is a fantastic library. But in the code written
above, we can still point out the extravagant memory usage required for the computation of the
velocity field v = K(q,q) @ p: to differentiate “PowConstant”, “Div”, “Exp” and “Addmm”, the
backpropagation algorithm has to store in memory full N -by-N intermediate results: qi − qj ,
−‖qi − qj‖2, etc.

Therefore, the native PyTorch implementation of page 72 is intractable as soon as the number of
points N exceeds the square root of the GPU memory – that is, about 50, 000 for a recent
piece of hardware.

Towards more flexibility. To break this ceiling, one can wrap the critical computation of ‘v’
into a generic and memory efficient operator: the KernelProduct object, which implements the
kernel convolution formula. As KernelProduct takes as input two point clouds and one momentum
field – of respective shapes (N,D), (M,D) and (M,E) – to output a momentum field of shape (N,E),
the torch.autograd module will never need to store full (N,M) arrays in the GPU memory. This
way of doing bypasses the built-in PyTorch operators to rely on a finely crafted CUDA memory
management scheme.

Static autodiff. Remember. The legacy Theano (2008-2017) library divided in three steps the
translation of a python symbolic script into an efficient GPU routine. First, the python programmer
declared a whole computational graph at once, without any actual computation taking place. Then,
a graph optimizer pruned out unused nodes, merged subgraphs, etc., and automatically generated
a C/CUDA program. The latter was then compiled using gcc, and the resulting executable was
linked to a wrapper python function.
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This way of doing made differentiation look easy: ‘.grad’ was just another symbolic node in a
purely abstract computational graph. Unfortunately, it also induced two adverse side effects: a
lengthy compilation time at the start of every single script; the inability to implement dynamic
flow control (if-then-else structures, etc.), which make the operations applied to arrays depend
on their actual values.

The dynamic workflow. The PyTorch library has recently been introduced to cover those
deficiencies. Unlike the static Declaration-Optimization-Compilation frameworks, it implements a
dynamic workflow which can be summarized as follows:

1. Variables are seen as graph objects, wrapped around int/float arrays.

2. Instructions are executed on-the-fly, using pre-compiled CPU or GPU routines in the back end.
The result of any such operation is a new Variable wrapped around an “output” array, with
a “graph history” attribute keeping track of all the operations that are needed to compute
the output.

3. As differentiation upsets the whole “graph history” of input Variables, it is handled by a
specific bunch of instructions. If a variable H was computed using two user-defined variables
q and p, the most math-like way of applying a backpropagation pass on the graph history of
H is to write:

[dq,dp] = torch.autograd.grad( H, [q,p], g, create_graph=True)

where g is the “ìnput” gradient x∗p with respect to H, initialized by default to 1 if H is
scalar. This special instruction outputs two variables dq and dp whose numerical values were
computed as output of the backpropagation algorithm.

Computing second derivatives. The default behaviour of autograd.grad is to output
Variable objects with a blank history: if one simply needs to do gradient descent on H, keeping
track of the computational history of the gradients is basically useless. However, differentiating
functions such as the Hamiltonian a second time is crucial in many applications – for instance,
shape analysis.

This is made possible by the create_graph flag. When it is set to the value True – as in the above
instruction – PyTorch considers that the diagram displayed in page 69 is a new “forward” program
which takes as input the vector x0 and the covector x∗p, to output the backpropagated gradient x∗0.

This means that the autograd.grad instruction can be differentiated once again, at the condition
that the order-0 and order-1 operators Fi and ∂xFi defined Eq. (10.13-10.14) are available as
computer programs... As well as their own gradients. In practice, this means that PyTorch
must know how to compute the “gradients of gradients” operators:

∂x0(∂xFi(x0) · a) : RNi−1 × RNi × RNi−1 → RNi−1

(x0,a, e) 7→ ∂x0(∂xFi(x0) · a)(x0,a) · e (10.17)

∂a (∂xFi(x0) · a) : RNi−1 × RNi × RNi−1 → RNi

(x0,a, e) 7→ ∂a(∂xFi(x0) · a)(x0,a) · e (10.18)

The convolution operator. The simplest way of doing so is to define operators of “order 1”
such as KernelProductGrad_x, and explicitly use them in the backward method of our order 0
operator, KernelProduct.
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As PyTorch is not yet fully documented, we provide below the meaningful elements of syntax that
can allow one to implement a twice-differentiable CUDA-based operator. This may help other
researchers to get their own non-standard ideas to work on real data. Going further, one can
bootstrap these routines and define infinitely differentiable programs, as documented in our reference
code:

https://www.kernel-operations.io.

1 import torch
2 class KernelProduct(torch.autograd.Function):
3 @staticmethod
4 def forward(ctx, s, x, y, b, kernel_type):
5 # save everything to compute the gradient
6 ctx.save_for_backward( s, x, y, b )
7 # init gamma, the output of the convolution K_xy @ b
8 gamma = torch.zeros( x.size()[0] * b.size()[1] ).type(dtype)
9 # Inplace CUDA routine on the raw float arrays,

10 # loaded from .dll/.so files by the "ctypes" module
11 cudaconv.cuda_conv( x.numpy(), y.numpy(), b.numpy(),
12 gamma.numpy(), s.numpy(),
13 kernel = kernel_type)
14 gamma = gamma.view( x.size()[0], b.size()[1] )
15 return gamma
16

17 @staticmethod
18 def backward(ctx, a):
19 (ss, xx, yy, bb) = ctx.saved_variables
20 # In order to get second derivatives, we encapsulated the
21 # cudagradconv.cuda_gradconv routine in another
22 # torch.autograd.Function object:
23 kernelproductgrad_x = KernelProductGrad_x().apply
24

25 # Call the CUDA routines
26 # ...
27 grad_x = kernelproductgrad_x( ... )
28 # ...
29 return (grad_s, grad_x, grad_y, grad_b, None)
30

31 class KernelProductGrad_x(torch.autograd.Function):
32 @staticmethod
33 def forward(ctx, s, a, x, y, b, kernel_type):
34 # Save for Backward + Call the CUDA routines
35 # ...
36 return grad_x
37

38 @staticmethod
39 def backward(ctx, e):
40 # Call the CUDA routines
41 # ...
42 return (grad_xs, grad_xa, grad_xx, grad_xy, grad_xb, None)
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The resulting object can now be used seamlessly in a PyTorch computation, taking as input a
kernel size, a kernel type (such as “gaussian” or “energy”) and three tensors. KernelProduct is
as easy to use as a built-in operator and stands for the following piece of graph:

y
(M,D)

s
(1)

∂KernelProduct
(N,E)

x
(N,D)

y
(M,D)

b
(M,E)

x
(N,D)

b
(M,E)

Computing a kernel product efficiently. This python object can be used to compute “kernel”,
“currents”, “varifolds” or “Optimal Transport” discrepancies between shapes. Crucially, it can also
be used in the declaration of the Hamiltonian: in the PyTorch example showcased page 72, one
simply has to replace the lines 25-35 with the code shown below. The resulting computational
graph is then mathematically equivalent to that of page 71, but doesn’t store any large matrix in
memory.

1 # Compute the kernel convolution
2 kernelproduct = KernelProduct.apply
3 v = kernelproduct(s, q, q, p, "gaussian")
4 # Then, compute the Hamiltonian H(q,p):
5 H = .5 * torch.dot( p.view(-1), v.view(-1) ) # .5*<p,v>
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Figure 10.1: GPU architecture.

Figure 10.2: Inside a computational block.



SESSION 11 Introduction to deep-learning

Deep Learning 101

In today’s workshop, we’re going to classify images using neural networks and nonlinear image
transforms. The emphasis will be put on models’ architectures, with the actual training and
visualization code kept into routines such as evaluate_model, located in the model_utils file.

De-mystifying neural networks. The main purpose of these sandbox notebooks is to let you
play around with models, “neurons” and convolution filters. As you get to see how these things
work under the hood, you should hopefully understand:

– Just how much of a game changer the Autodiff+GPU combo can be: today in computer
vision (and natural language processing), tomorrow in your own research field, whatever it is.

– HowConvolutional Neural Networks can be linked, (at the very least) from an algorithmic
perspective, to Wavelet Transforms.

– That the current “Artifical Intelligence” hype around image processing algorithms does not
come from scientists. Using momentum-based gradient descent (i.e. letting a heavy ball roll
on a hyper-surface of potential) to fine tune the parameters of a wavelet-like transform can
help you to extract the most relevant features in your signal - which is an incredibly useful
pre-processing step with tons of industrial applications. But it can not, in any way, model
thought. As far as the modelling of cognitive processes is concerned, we’re still very much in
the stone age.

Anyway, let’s get started. If you haven’t done it already, please go through the PyTorch syntax
tutorial available at the following address:

pytorch.org/tutorials/beginner/pytorch_with_examples.html

Gradient descent: the stealth regularization prior

In the Deep Learning literature, researchers tend to use (stochastic/momentum-based) gradient
descent as their go-to optimization procedure: this algorithm is both simple to implement and
efficient in practice. But is it as innocuous/trivial as it seems to be? No, it isn’t.

The gradient depends on your underlying metric. As we’ve seen in the previous workshop
sessions, the gradient is fundamentally a metric object. If f : X → Y is a differentiable function
between two Euclidean/Hilbert spaces, it is defined as the adjoint of the differential, seen
through the Riesz isomorphism; that is, as the unique application ∂xf(x0) : Y → X such that

∀ b ∈ Y,∀ δx ∈ X, 〈f(x0 + δx) , b〉Y = 〈f(x0) , b〉Y + 〈δx , ∂xf(x0).b〉X + o(δx). (11.1)

If f : RN → R is a cost function, PyTorch computes its “algorithmic” gradient

∂L
2

x f(x0) : R→ RN ' (∂x[1]f(x0), · · · , ∂x[N ]f(x0))T (11.2)

which is nothing but the L2-gradient associated to the canonical L2-norm on X = RN :

∀x ∈ RN , 〈x, x〉X =
N∑
i=1

x[i]2. (11.3)
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More often than not, this choice is a good one. But you should never forget how much it depends
on the way you encoded your data vector x: with respect to your real-life problem, the L2

gradient is just as (ir)relevant as the L2 unit ball. Does it make sense? Great. Otherwise,
you should be really careful about the bias, the implicit regularization prior you’re introducing in
your algorithm.

To illustrate this, consider the minimization of a blur-distance function

fk,y : x ∈ RN 7→ ‖k ? x− y‖22, (11.4)

where y ∈ RN is a target signal and k is a 1D-convolution kernel. If the Fourier transform of k
is never equal to zero, the associated convolution operator is invertible; in this case (say, if k is
Gaussian), fk,y is a positive definite quadratic form defined on RN , whose unique minimum is
the well-defined signal

x∗ = k(−1) ? y. (11.5)

Naive theoretical prediction. The strictly convex function fk,y is as simple as it gets, in a
finite-dimensional space: Therefore, a standard gradient descent (with a small stepsize) should
quickly converge to x∗, the unique signal such that k ? x∗ = y. Let’s see how this works in practice.

After a sharp decline, the algorithm seems to get stuck and converge... towards a value which
is not that of the unique critical point of our function, fk,y(x∗) = 0.

Figure 11.1: As we try to solve the deconvolution problem with the black curve standing for y,
starting from the null blue curve, our unconstrained L2 gradient descent scheme gets stuck in a
position which is as close as possible to the target y, while sharing the same (nil) high frequency
content as the initial guess.
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Computing the L2 gradient. To understand the “smoothing” behavior of the L2 gradient
descent in this particular example, we have to open the black-box and actually compute ∂L2

x fk,y(x0)
at an arbitrary location x0. By definition, it is the unique vector of X = RN such that, for all
δx ∈ X and b ∈ R,

〈 fk,y(x0 + δx) , b 〉R = 〈 fk,y(x0) , b 〉R + 〈 δx , ∂xfk,y(x0).b 〉2 + o(‖δx‖2). (11.6)

Since we know that

fk,y(x0 + δx) = 〈 (k ? x0 − y) + k ? δx , (k ? x0 − y) + k ? δx 〉2, (11.7)

we have
∂L

2

x fk,y(x0) = 2 k̃ ? (k ? x0 − y), (11.8)
where k̃ is the mirrored symmetric of k, the unique filter such that “k̃ ? · ” is the L2-adjoint of
“k ? · ”. If k is a centered Gaussian kernel, one simply has k̃ = k.

Poorly conditioned operators. Hence, computing the L2 gradient of fk,y involves a smooth-
ing of the difference vector k ?x0−y. As this operation all but kills the high frequency components,
our gradient descent scheme has no way to generate high frequencies in x, nevermind k ?x.
In practice, using the L2 gradient to minimize fk,y is thus akin to enforcing a soft restriction:
that of only looking for vectors x which have “the same high frequency content” as the initial guess
x(it = 0).

Using arbitrary descent metrics. We won’t discuss this topic any further. But please note
that if A : RN → RN is an invertible linear matrix of size N -by-N , then AAT is a symmetric
positive definite matrix which defines a metric on RN :

∀x ∈ RN , 〈x, x〉AAT = 〈x,AATx〉2. (11.9)

Then, if f : RN → R is a differentiable function, the minimization of f with an AAT -gradient
is equivalent to the minimization of f ◦A−1 with an L2 gradient. Using PyTorch, we can
thus use arbitrary descent metrics by introducing hidden changes of variables.

An image classification problem

These preliminaries in mind, we can now use a “neural” network to tackle our first image classifi-
cation problem. Unlike what was presented in the previous workshop session, we won’t add an
explicit regularizer to our cross-entropy loss: we rely entirely on the implicit regularization
provided by the L2 descent scheme, and hope for the best.

Loading the dataset. Our task: classifying into ten groups the images from the
“FashionMNIST” dataset of whom you can get an overview at the following address:
github.com/zalandoresearch/fashion-mnist. A sample is displayed below:
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Tackling the problem using a multilayer perceptron

Neural nets reminder. Just as in the previous workshop session, we can try to “learn” a
regression rule by optimizing the weights of a fully connected network. Formally, we’re trying to
optimize the weights W1, b1 and W2, b2 of a couple of operators (F1, F2) given by

F1(x) = Relu (W1 · x+ b1) (11.10)
F2(x) = argmax(W2 · x+ b2) (11.11)

where Relu : x 7→ max(0, x) is applied pointwise, and argmax goes from R10 to {1, 2, · · · , 10}. The
global model F = F2 ◦ F1 is the concatenation of those two operators, and we wish to find F such
that F (xi) is as often as possible equal to the label yi on the test set. That is, we wish to minimize∑

i

1F (xi)6=yi (11.12)

on the test set, having only tuned the parameters on the “training” set.

The logistic embedding. Because the argmax operator is piecewise constant, its gradient is
pretty uninformative and cannot drive an optimization routine. Hence, we replace it with a softmax
operator

Softmax : x ∈ R10 7→
(

exi∑
j e
xj

)
i

∈ R10 (11.13)

and strive to minimize the cross-entropy loss seen in the previous workshop session (Softmax
Logistic regression).

Results. The performances on the test dataset are surprisingly good: most of the confusion
comes from classes which are “close” to each other such as “Shirts” and “T-shirts”. Even a human
operator could get somewhat confused isn’t it?

(a) Tracking the training process. (b) Final confusion matrix.

Figure 11.2: Training of a two-layer perceptron on the FashionMNIST dataset.
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Visualizing our classification program. To understand the decision rule, we generate by
gradient ascent on the score (from a user-defined starting point) an image that our network classifies
as “100% a T-shirt”:

(a) Starting from a zero image. (b) Starting from a noisy image.

Figure 11.3: Images labelled as T-shirts with full confidence by our trained 2-layer perceptron. We
can more or less see the shape of a shirt in (a)... However, keep in mind that our model has no
prior knowledge of what a natural image should look like. Hence, it does not distinguish
(a) from (b), and classifies both as T-shirts.

Tuning our network’s architecture. To gain a few percents, one can finely tune the data
flow and create more and more complicated models. In the notebook, we present a model (freely
available on GitHub) that was written with this dataset in mind and indeed performs slightly better
on the MNIST dataset.

Remember: Thanks to the flexibility of Autodiff libraries, we can now implement and optimize
the parameters of any model that fits in memory. Given this astounding freedom, the real
question thus becomes: how should we design our image processing programs?

A more realistic dataset

Perceptrons are fine for images that are perfectly centered as they can, for instance, learn that
“sandal” images will never present white pixels in the top left corner. But all of this sounds a bit too
easy, isn’t it? We now want to focus on a more realistic classification problem: a FashionMNIST
dataset in which pieces of clothing are not perfectly centered. This is relevant as in practice,
the correct segmentation of image parts is at least as difficult as the classification of normalized
and centered images...

Loading the dataset - and applying random translations. In the notebook, we take
advantage of a nice PyTorch syntax to apply randomized transformations every time an image is
loaded. A random sample is displayed below:
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First try : a good old two-layer perceptron. Can the fully connected perceptron perform
well in this “un-sanitized” environment? Well, not really. As shown below, test set accuracy is
considerably lower than in the centered case.

(a) Monitoring the learning process. (b) Visualizing the first hidden layer.

Figure 11.4: Training a two-layer perceptron on the “un-centered” FashionMNIST dataset.
(a) Notice the drop in performance, compared with Figure 11.2.
(b) Every little square corresponds to a “neuron” of our perceptron’s first operator – really, these are
linear forms on the space of images. Quite remarkably, the first operator of our model has converged
towards a DiscreteCosinus-like Transform, made out of stripes! This makes sense, as a linear and
translation-invariant operator is necessarily diagonal in the Fourier basis: even though it relies
on non-linearities, our network has converged towards a kind of “spectral” translation-invariant
classifier.

Enforcing translation invariance with convolutions

Expecting a generic perceptron to give perfect results was too optimistic: as this model is theoretically
able to emulate any classifier, it is prone to overfit the training data. In a sense, we already
encountered such a problem in the Wavelet Thresholding Numerical Tour:

nbviewer.jupyter.org/github/gpeyre/numerical-tours/blob/
master/python/denoisingwav_2_wavelet_2d.ipynb
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The translation invariance prior. In this previous workshop session, replacing the orthogonal
wavelet transform with a translation-invariant transform (using cycle-spinning or the algorithme
à trous) dramatically increased the robustness of wavelet-based denoising algorithms. Likewise,
enforcing translation invariance in perceptrons will be a crucial step in the design of trainable
operators for image processing. This prior is easy to enforce: we know that a translation-invariant
linear operator can necessarily be represented as a convolution operator. It is thus natural to
replace the generic linear operators known as “Fully connected layers” by their translation
invariant counterparts, encoded as sets of convolution filters.

The multiscale prior. Furthermore, on top of translation invariance, we also know (or assume...)
that natural images have a multiscale structure: there are relevant features at every scale, which
are built as combinations of smaller details (edges → eyes → faces). In practice, this means that we
should prefer architectures with deep cascades of small convolution filters. Just like in a wavelet
transform!

Designing trainable transforms for image processing. A consensus emerged in the last
few years: when designing a “neural network” (i.e. a trainable transform) for image classification
tasks, we should typically restrict ourselves to a cascade of:

– Convolution operators such as nn.Conv2d.
– Su(b-p)sampling (“(un)pooling”) operators such as F.max_pool2d.
– Pointwise operations such as F.relu.
– Utility operators such as batch normalization or dropout layers, that we won’t detail here.

By enforcing a relevant prior knowledge into an algorithm-fitting method, we are able to achieve
much better results. Please play around with the visualization routines provided in the notebook!

(a) First convolution layer. (b) Second convolution layer.

Figure 11.5: Visualizing some “neurons” of a Convolutional Neural Network trained on the un-
centered FashionMNIST dataset. These images were designed to trigger a strong response after one
(a) or two (b) convolution+Relu operations. As we dive into deeper layers, these images have a
larger support and tend to “represent” more complex features.



84 Chapter 11. Introduction to deep-learning

Trying with a deeper net

Why do we speak about “deep learning”? As everyone who actually trained these kinds
of model can tell: Deeper is better. That is, stacking layers empirically increases accuracy and
reduces overfit. As of 2017, this regularizing effect of “deep” networks is not understood – some
people try to explain it through statistical physics analogies, but I don’t know what it’s worth.
This hasn’t prevented the GPU arms race to take place: researchers now routinely work with tens
or hundreds of stacked convolution layers in a single model.

Deep learning: is it lasagna cooking? To illustrate on your machines this “copy-paste”
philosophy which produces excellent results in most computer vision tasks, a simple four-layer
architecture is presented in the notebook. Please have a look!

(a) Monitoring the training process. (b) This is definitely a shirt!

Figure 11.6: Training a 4-layer CNN on the un-centered FashionMNIST dataset.
(a) The training process is computationaly intensive, but tends to converge towards a better classifier.
The general trend is that deeper CNNs generalize best outside of their training sets.
(b) Keep in mind, though, that good performances on a given task do not magically transfer into
a general understanding of the underlying real-world phenomenon. High-dimensional, generic
machine learning algorithms tend to be very brittle: they cannot be expected to provide meaningful
answers outside of their comfort zone, the “ “convex hull” ” of their training dataset.

Going further

Getting back to earth. At this point, one could be tempted to see CNNs as programs which
intelligently extract the best out of any large enough database. Indeed, fascinated by the beautiful
“DeepDreams” or “DeepArt” visualizations that were recently advertised in the media, people tend
to fall into the “Pygmalion trap” of attributing to good-looking results human-like qualities. As
it is a hot “newspapers” topic at the moment, here are a few papers and links I would recommend
on the subject:
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– CNNs do not see the world with human eyes: Deep neural networks are easily fooled:
High confidence predictions for unrecognizable images, Nguyen, Nosinski, Clune, 2015 :
www.evolvingai.org/fooling

– Prior to any training, the implicit image regularizing prior encoded in a convolutional
architecture + L2 gradient descent scheme is already extremely strong: Deep Image Prior,
Ulyanov, Vendaldi, Lempitsky, 2017 : dmitryulyanov.github.io/deep_image_prior

– The theory of non-linear wavelet transforms (aka. scattering operators) can be studied as a
first mathematical model of deep convolutional networks: Invariant Scattering Convolution
Networks, Bruna, Mallat, 2012 : arxiv.org/abs/1203.1513;
Deep Haar Scattering Networks, Cheng, Chen, Mallat, 2015 : arxiv.org/abs/1509.09187.

Orthogonal references. In this course, Gabriel and myself presented to you a brief introduction
to Data Science and Deep Learning from a geometric, analytical point of view. But you shouldn’t
take our word on it! To help you see this moving field without mathematically-tinted glasses,
here is a list of websites which are definitely worth reading:

– The course notes of Andrej Karpathy from Stanford, cs231n.github.io . This is the reference
introduction to the subject from the computer science point of view. His post on Recurrent
Neural Networks (which are to hidden Markov models what CNNs are to wavelet transforms)
can also help you to get a grasp of the expressivity (or lack thereof) of the models currently used
in natural language processing: karpathy.github.io/2015/05/21/rnn-effectiveness

– The blog of Chris Olah (+ everything on Distill), colah.github.io. In my opinion, his
statements and visualizations are sometimes a bit over-optimistic, brushing things under the
carpet... But he has put a lot of high-quality work into producing accessible material on
the subject. Have a look!

– The blog of Ferenc Huszár, www.inference.vc, with a refreshing Bayesian + Information
Theoretic point of view on pretty much everything.

What should you take back from all this?

In my opinion, these are three main points you should remember from today’s session:

The generic Neural Network problem is irrelevant. You cannot just stack up a bunch
of generic linear operators and hope for the best: if a model can express everything, it can
also overfit anything. To put prior into their algorithms, researchers restrict themselves to
carefully chosen architectures (submanifolds in the space of programs/transforms, if you want)
and use optimizing techniques which empirically provide good generalization properties outside of
the training set (i.e. little overfit).

Using an “isotropic” L2 gradient to optimize a neural network is very significant, as it heavily
implies that the coordinates used to represent the model (i.e. the neural weights) should be
“decorrelated” and “of the same scale”. In general, gradient descent does not converge towards the
global optimum of the cost functional, or even towards a genuine critical point.
(N.B.: Heavy ball, BFGS or other order-1 minimization methods don’t really change this, just like
they can’t automagically recover the “high frequency” dimensions that one loses when working with
blurred signals.)
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CNNs are great, but definitely not “intelligent”. They should not be expected to perform
well on non-image/audio data. You’ll get a much clearer understanding of their limits if you see
them as “beefed up” wavelet transforms.

As of today, neural networks have proved their worth in “only” two fields: signal processing
(where CNNs succeed wavelet transforms) and natural language processing (where RNNs
succeed hidden markov models). As the “neural net” versions of the classical models share their
algorithmic structure with their predecessors, they are subject to the same kind of pitfalls
(e.g. the structural inability of RNNs to generate purposeful sentences and paragraphs).

You can now agressively optimize the parameters of your favorite data flow. If we
leave the pseudo-physiological justifications aside, what really sticks out of the current research on
neural networks is the development of automatic differentiation frameworks. In the last few
years, the MILA, Google and Facebook (mainly), have put in a considerable engineering effort to
develop easy-to-use and scalable development toolboxes such as TensorFlow and PyTorch.

Now, this may seem surprising... but in my opinion, this low-level work is the most far-
reaching component of the current research effort on neural networks. A genuine revo-
lution for many applied fields, and not just computer vision!

Going beyond formulas. Until very recently, the only way to improve existent algorithms was
to think about your problem very hard, try a few long shot ideas and hopefully come up with
better results. But these efficient autodiff libraries have opened up a new path: the large-scale
tuning of the thousands of parameters defined by your abstract formula/theory/computational
graph. This means that as researchers, we now have the tools to leave the reassuring shores of “fully
understood programs” and actually venture towards the wild world of real, non-mathematically
formulated problems.

A new challenge for applied mathematicians. Understanding which parts of our “mathe-
matical” data flows are crucial (translation invariance, multiscale priors...), and which part can be
“freely optimized” (the actual filter coefficients...) is one of the major challenges that awaits
researchers in the coming years.

If I had to make a far-fetched architectural analogy, I’d say that traditional mathematical theories
are comparable to stone, steel and wood: highly structured materials that can produce lasting
monuments, but require a skilled workforce and have their intrinsic limitations. Pure data on the
other hand is a bit like concrete: an amorph mass which was very hard to deploy in large scale
applications... Until the development of prestressed concrete in the 1920’s!

Finding the right balance between expert prior knowledge and acquired datasets. The
development of Python+Autodiff+GPU frameworks, which provide researchers with a simple way
of leveraging supervised datasets for their own specialized workflows, has the potential
to be a turning point in the history of many applied maths fields. As we head towards hybrid,
“mathematically structured” + “data driven” models, we may be able to engage more easily with
our colleagues from other fields, on top of seeing a new class of “meta” problems arise.

Now, I may be wrong... But whatever the outcome of the journey, there’s exciting times ahead!
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Bonus tracks

Due to the training time of the models, I highly doubt you’ll be able to read those lines before the
end of the workshop session... But, just in case, please find below a few extensions, with some
sandbox code provided in the notebooks.

When CNNs meet wavelets. Constraining a fully-connected neural networks to be (quasi)
translation-invariant, we ended up with a data flow that iterates convolutions with small filters,
pointwise nonlinearities and subsampling operations. This very much looks like a non-linear wavelet
transform (with complex norms at every scale), where filters are optimized with respect to
a given task instead of being chosen for their mathematical properties. Thanks to the
current hardware (GPUs) and software (efficient and easy-to-use autodiffs libraries) revolution, this
kind of fine-tuning of the models’ parameters (say, filter coefficients) is now a realistic task. But do
we really need to optimize every single filter from scratch ?

Not always. In some cases indeed, the first filters of a typical CNN converge to wavelet-like features,
which makes sense even from a physiological point of view: vision relies on edge detectors, which
quotient out local illumination changes. Hence, we can “help” the training of our CNN by replacing
its first layers with a hard-coded wavelet-like operator, the scattering transform. To toy around
this idea, please use the code provided in the notebook. Beware: the underlying routines have not
been optimized on CPU, and can thus be veeeeeery slow if you don’t own an Nvidia GPU...

Transfer learning: using a pre-trained transform. Convolutional Neural Networks are
nothing but finely tuned non-linear transforms. So why should we retrain them every time? In
practice, most researchers and engineers contend themselves with a standard pre-trained network,
and build custom applications on top! In this community, the re-use of neural weights is known as
Transfer learning. You can read more about it at the following address:

cs231n.github.io/transfer-learning

Then, if your computer is fast enough, you can try to play around in the sandbox notebook cells :-)
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SESSION 12 Introduction to optimal transport

Information Geometry and Statistical Manifolds

Let µ and ν be two probability measures on a reference space X. In the previous workshop sessions,
we presented the Kullback-Leibler divergence

KL(µ || ν) =
{∫

log
(

dµ
dν

)
dµ if µ is absolutely continuous wrt. ν

+∞ otherwise
(12.1)

and shown that it can be used as a convenient discrepancy formula between the two “histograms”
µ and ν. It is nonnegative, and null iff µ = ν, but is not symmetric: µ should be understood as an
“observed distribution”, and ν as a prior “model”.

In his lecture dedicated to Optimal Transport, Gabriel also introduced the Wasserstein distance
between any two (nonnegative) probability measures µ and ν defined on a metric space (X, dX):

d2
W (µ, ν) = min

µ
Γ−→ν

∫
X×X

d2
X(x, y) dΓ(x, y) (12.2)

where admissible transport plans Γ are defined as nonnegative measures on the product X ×X
such that (with slightly abusive notations):∫

X

dΓ(x, y) dy = dµ(x) and
∫
X

Γ(x, y) dx = dν(y). (12.3)

Since these two quantities are often used as “standard” data attachment terms between measures,
and since both of them have strong theoretical backing, one question absolutely needs to be
answered: How do these two discrepancies compare with each other? To find out, let’s
investigate their properties in the simple case of Gaussian densities on the real line.

Gaussian distributions. On the metric space (R, | · |) endowed with the standard Lebesgue
measure, one can define the Normal Gaussian distribution N (0, 1) by

N (0, 1)(A) = 1√
2π

∫
A

exp(−x2/2) dx for any Lebesgue-measurable set A. (12.4)

Then, we define the Gaussian distribution N (µ, σ2) as the image of the normal measure N (0, 1)
through the affine reparametrization

fµ,σ : x ∈ R 7→ σx+ µ, (12.5)

where µ ∈ R is the mean and σ2 > 0 the variance of our measure. The well-known formula is that
for any deviation σ > 0, one has:

N (µ, σ2)(A) = 1
σ
√

2π

∫
A

exp(−(x− µ)2 / 2σ2) dx for any Lebesgue-measurable set A. (12.6)

Statistical manifolds. A powerful viewpoint to analyze statistical problems is to see the param-
eters θ of modeled distributions p( · , θ) as coordinates of a manifold of probability distribution; as
we endow the latter with the metric structure induced by a canonical discrepancy between
probability measures, we can leverage our geometric intuition and expect non-trivial results. This
is what we’re about to do in the simple case of Gaussian models, as we link up with the course of
“Statistics” provided by the the maths department!



In the following exercises, the parameter θ = (µ, σ) ∈ R× R+ is a point in the upper half-plane,
and we generically denote

Gi = N (µi, σ2
i ) ∈ Prob(R). (12.7)

Exercise 1: Fisher-Rao metric on the space of Gaussian distributions

1. Assuming that σ1 and σ2 are positive, show that

KL(G1 ||G2) = 1
2

[
log
(
σ2

2
σ2

1

)
− 1 +

(
σ1

σ2

)2
+ (µ1 − µ2)2

σ2
2

]
. (12.8)

In the general multidimensional case, where µi ∈ Rd and Σi ∼ σ2
i is a symmetric definite

positive d-by-d matrix, this formula becomes:

KL(G1 ||G2) = 1
2

[
log
(
|Σ2|
|Σ1|

)
− d+ tr(Σ−1

2 Σ1) + (µ1 − µ2)TΣ−1
2 (µ1 − µ2)

]
. (12.9)

2. The formula displayed above is not symmetric and thus cannot be used to induce a distance
on the space of parameters – never mind a Riemannian one. However, there exists a way to
“fix” the theory by defining an infinitesimal Riemannian metric as follow. Let (µ0, σ0) be a
set of parameters, and let (δµ, δσ) be a small admissible deviation associated to a probability
measure G0+δ = N (µ0 + δµ, (σ0 + δσ)2). Show that

KL(G0+δ ||G0) =
1
2 (δµ)2 + (δσ)2

σ2
0

+ o((δµ, δσ)2). (12.10)

3. Endow the upper half-plane of parameters (µ, σ) with the Fisher-Rao (Riemannian)
information metric defined above. Up to a change of variable µ 7→ µ/

√
2, please recognize

the Poincaré hyperbolic metric. Can you reach the boundary of this statistical manifold?

Exercise 2: Wasserstein metric on the space of Gaussian distributions
In the exercise above, we endowed the upper half-plane with the unique (pull-back) Riemannian
metric gFR : R× R+ → S++

2 (R) such that

N : (µ, σ) ∈ (R× R+, gFR) 7→ N (µ, σ2) ∈ (Prob∞>Leb(R),Fisher-Rao) (12.11)

is a Riemannian isometry onto its image, where Prob∞>Leb(R) is the set of probability measures with
smooth, positive density with respect to the Lebesgue measure on R. Making a similar analysis,
show that the “pull-back” of the Wasserstein metric on the set of probability measures by the
embedding “Gaussian” map N is no one but the Euclidean metric on R× R+.
(Hint: In dimension 1, an optimal transport plan for the Wasserstein metric is monotonous. The
optimal mapping from G1 to G2 is thus explicitly given by f2 ◦ f−1

1 .)

Exercise 3: How do you interpret the geometry of these two statistical manifolds? One can
say that the Fisher-Rao metric defines a canonical vertical distance between densities, which is
independent of the underlying parametrization or system of coordinates. On the other hand, the
Wasserstein problem defines a canonical horizontal distance between measures, which does not
model any kind of mass creation/destruction.
In which case would you recommend to use one over another?

As of 2017, the study of these metric on spaces of measures is a very active research topic. To
go further, I would recommend the following paper: An Interpolating Distance Between Optimal
Transport and Fisher–Rao Metrics, Chizat, Peyré, Schmitzer, Vialard (2016).

Exercise 4: How do we compute, in practice, the Wasserstein distance between any two discrete
measures? To discover the baseline “simplex” algorithm, please go through the dedicated Numerical
Tour: optimaltransp_1_linprog.ipynb.
Please note that thanks to the work of Jean-Charles Gilbert, the French Wikipedia articles on
linear optimization are a great read!



Solution 91

Solution

Exercise 1: Using a change of variables f−1
µ1,σ1

: y 7→ y−µ1
σ1

= x, we find

KL(G1 ||G2) =
∫

log
(

dG1

dG2
(y)
)

dG1(y) (12.12)

=
∫

log
(

dG1/dλ(x)
dG2/dλ(x)

)
dN (0, 1)(x) (12.13)

=
∫

log
( 1

σ1
√

2π exp(−x2/2)
1

σ2
√

2π exp(−(σ1x+ µ1 − µ2)2/2σ2
2)

)
dN (0, 1)(x) (12.14)

=
∫

log
(
σ2

σ1

)
− x2

2 + σ2
1

2σ2
2
x2 + 2 σ1

2σ2
2

(µ1 − µ2)x+ (µ1 − µ2)2

2σ2
2

dN (0, 1)(x) (12.15)

= log
(
σ2

σ1

)
− 1

2 + σ2
1

2σ2
2

+ 1
2

(µ1 − µ2)2

σ2
2

(12.16)

= 1
2

[
log
(
σ2

2
σ2

1

)
− 1 +

(
σ1

σ2

)2
+ (µ1 − µ2)2

σ2
2

]
, (12.17)

since we have∫
1 · dN (0, 1)(x)︸ ︷︷ ︸

total mass

= 1,
∫
x · dN (0, 1)(x)︸ ︷︷ ︸

mean

= 0,
∫
x2 · dN (0, 1)(x)︸ ︷︷ ︸

variance

= 1. (12.18)

Question 2: Using a Taylor expansion of log(1 + x), we get

KL(G0+δ ||G0) = − log
(

1 + δσ

σ0

)
+ 1

2

[
−1 +

(
1 + δσ

σ0

)2
+ δµ2

σ2
0

]
(12.19)

= −

(
δσ

σ0
− 1

2

(
δσ

σ0

)2
)

+ 1
2

[
2 δσ
σ0

+
(
δσ

σ0

)2
+ δµ2

σ2
0

]
+ o((δµ, δσ)2) (12.20)

=
1
2 (δµ)2 + (δσ)2

σ2
0

+ o((δµ, δσ)2) (12.21)

Question 3: Denoting ν = µ/
√

2, we get

KL(G0+δ ||G0) = (δν)2 + (δσ)2

σ2
0

, (12.22)

which is the canonical expression of the Poincaré metric on the upper half-plane. For complete
reference on the subject, I recommend the nice introductory paper Hyperbolic Geometry by J.W.
Cannon et al. (1997). This standard model of hyperbolic geometry is in the baggage of most
mathematicians; but for the sake of completeness, let’s show that its boundary cannot be
reached.

Starting from an arbitrary location, say A = (0, 1), we wish to see if a path of finite length can
allow us to get out of the domain R× R?+. According to the reduction principle – local orthogonal
decompositions between vertical (useful) and horizontal (needless) displacements – we know that
the “shortest paths out” are the vertical lines (upward and downward) parametrized, for instance,
by the paths

γ : t ∈ [0, 1] 7→ (0, 1− t) and κ : t ∈ [0,+∞] 7→ (0, 1 + t). (12.23)
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But then, computing the Riemannian lengths, we get

`(γ) =
∫ 1

0
‖γ̇(t)‖γ(t) dt =

∫ 1

0
‖(0,−1)‖(0,1−t) dt (12.24)

=
∫ 1

0

√
1
2 · 02 + (−1)2

(1− t)2 dt =
∫ 1

0

1
1− t dt = +∞, (12.25)

`(κ) =
∫ +∞

0
‖κ̇(t)‖κ(t) dt =

∫ +∞

0
‖(0,+1)‖(0,1+t) dt (12.26)

=
∫ +∞

0

√
1
2 · 02 + (+1)2

(1 + t)2 dt =
∫ +∞

0

1
1 + t

dt = +∞. (12.27)

Hence, the space of Gaussian laws endowed with the Fisher-Rao metric is geodesically
complete.

Exercise 2: The only non-decreasing mapping from G1 to G2 is given by f2 ◦ f−1
1 . According to

Brenier’s characterization of Optimal Transport plans as gradients of convex potential fields, it is
thus the “Optimal Transport” mapping, as the transport plan Γ is formally defined as

Γ(A) =
∫
R

1A
(
t, f2 ◦ f−1

1 (t)
)

dG1(t) (12.28)

=
∫
R

1A (f1(t), f2(t)) dN (0, 1)(t) for any Borelian set A ⊂ R× R. (12.29)

The Wasserstein distance between G1 and G2 can thus be computed as

d2
W (G1, G2) = E(x,y)∼Γ

[
(y − x)2] =

∫
R

[f2(t)− f1(t)]2 dN (0, 1)(t) (12.30)

=
∫
R

[(σ2t+ µ2)− (σ2t+ µ2)]2 dN (0, 1)(t) (12.31)

= (σ2 − σ1)2 ·
∫
t2 · dN (0, 1)(t) + (µ2 − µ1)2 ·

∫
1 · dN (0, 1)(t) (12.32)

+ 2 (σ2 − σ1) (µ2 − µ1) ·
∫
t · dN (0, 1)(t) (12.33)

= (σ2 − σ1)2 + (µ2 − µ1)2. (12.34)

The geometry here is so simple that there is no need to speak of Riemannian infinitesimal metrics: in
every possible sense, the space of Gaussian laws endowed with the Wasserstein distance
is isometric to the upper half-plane, endowed with its canonical Euclidean structure.
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Exercise 3: We’re in luck! Gabriel released a nice illustration on the subject via his Twitter
account @gabrielpeyre (which is great, by the way: have a look!) :

Figure 12.1: Geodesics between two Gaussian laws, at constant speed. Note that Gabriel cheated a
little bit here, as he should have written “m/

√
2” instead of “m” to legend the Fisher-Rao plot’s

horizontal axis... But the nice color scheme more than makes up for it ;-)

From a practical point a view, the major difference between both metrics lies in the way they
handle degenerate distributions on the horizontal axis σ = 0 : while the Fisher-Rao structure
pushes diracs at infinity, the Wasserstein model handles them just like other Gaussian laws... at
the cost of losing geodesic completeness.

There is no clean way to extend a curve of Gaussian laws that reaches a dirac. In your modelling
process, you should thus ask yourself if these degenerate distributions are worth the trouble
of working with boundary manifolds (OT), or if you can afford to “throw them out” of your
model and stay in a geodesically complete setting (Fisher-Rao) – which considerably simplifies the
implementation and study of classical algorithms such as gradient descent, for optimization.
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SESSION 13 Distances between measures

In this workshop session, we showcase the properties of several geometric divergences defined on
the space of probability measures:

– Kernel Norms (aka. Maximum Mean Discrepancies),

– Maximum Likelihoods of Gaussian Mixture Models (aka. sum-Hausdorff distances),

– Optimal Transport costs (aka. Wasserstein or Earth-Mover’s distances).

To keep things simple and allow us to assess graphically the performances of our methods, we will
work with measures α and β sampled on the unit square:

α =
N∑
i=1

αiδxi , β =
M∑
j=1

βjδyj , (13.1)

where αi, βj are positive weights associated to the samples xi and yj in R2. In this notebook,
we will focus on the case where α and β are probability measures:

N∑
i=1

αi = 1 =
M∑
j=1

βj . (13.2)

In [3]: # α and β are sampled from two png densities
α_i, x_i = draw_samples("data/density_a.png", NPOINTS, dtype)
β_j, y_j = draw_samples("data/density_b.png", NPOINTS, dtype)

95
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Gradient flows. This notebook is all about studying Cost functions that have distance-like
properties on the space of probability measures. A simple way of highlighting the geometry induced
by such functionals is to follow their Wasserstein gradient flows, i.e. to integrate the ODE

ẋi(t) = − 1
αi
∇xiCost

(∑
i

αiδxi(t), β
)

(13.3)

starting from an initial condition xi(t = 0) = xi, performing a weighted gradient descent on the
function

Costβ : (xi) ∈ RN·d 7→ Cost
(∑

i

αiδxi , β
)
. (13.4)

In [5]: def gradient_flow(α_i, x_i, β_j, y_j, cost, lr=.05) :
"""
Flows along the gradient of the cost function, using a simple Euler scheme.

Parameters
----------

α_i : (N,1) torch tensor
weights of the source measure

x_i : (N,2) torch tensor
samples of the source measure

β_j : (M,1) torch tensor
weights of the target measure

y_j : (M,2) torch tensor
samples of the target measure

cost : (α_i,x_i,β_j,y_j) -> torch float number,
real-valued function

lr : float, default = .05
learning rate, i.e. time step

"""

# Parameters for the gradient descent
Nsteps = int(5/lr)+1
t_plot = np.linspace(-0.1, 1.1, 1000)[:,np.newaxis]
display_its = [int(t/lr) for t in [0, .25, .50, 1., 2., 5.]]

# Make sure that we won't modify the input measures
α_i, x_i, β_j, y_j = α_i.clone(), x_i.clone(), \

β_j.clone(), y_j.clone()

# We're going to perform gradient descent on Cost(Alpha, Beta)
# wrt. the positions x_i of the diracs masses that make up Alpha:
x_i.requires_grad_(True)

plt.figure(figsize=(12,8)) ; k = 1
for i in range(Nsteps): # Euler scheme ===============

# Compute cost and gradient
loss = cost(α_i, x_i, β_j, y_j)
[g] = torch.autograd.grad(loss, [x_i])
# in-place modification of the tensor's values
x_i.data -= lr * (g / α_i)
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This evolution can be understood as an ideal, model-free machine learning problem where a source
distribution αt is iteratively fitted towards a target (empirical) distribution.

Let us now display the evolution associated to the quadratic spring energy between labeled point
clouds.
In [6]: def L2_cost(α_i, x_i, β_j, y_j) :

"""
Simplistic L2 cost (aka. spring energy) between sampled point clouds,
assuming a pairwise correspondence between x_i[k] and y_j[k].
"""
return .5*(α_i*((x_i-y_j)**2).sum(1,keepdim=True)).sum()

gradient_flow(α_i, x_i, β_j, y_j, L2_cost)

It works! Now, let’s move on to costs that are well-defined between unlabeled point clouds with,
possibly, different weights and numbers of samples.

A computational building block: the kernel product

Most standard costs between sampled measures can be computed using a kernel product operator

KP :
(
(xi), (yj), (βj)

)
∈ RN·d × RM·d × RM·1 7→

(∑
j

k(xi − yj)βj
)
i

∈ RN·1
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where k : Rd → R is a convolution kernel. Mathematically, this operation is known as a discrete
convolution: Indeed, if β =

∑
j βjδyj is a discrete measure, the convolution product k ? β is a

function defined on Rd by

(
k ? β

)
(x) =

∑
j

k(x− yj)βj ,

so that computing the kernel product KP
(
(xi), (yj), (βj)

)
is equivalent to computing and sampling

k ? β on the point cloud (xi).
In [7]: def KP(x,y,β_j, kernel = "gaussian", s = 1.) :

"""
Computes K(x_i,y_j) @ β_j = \sum_j k(x_i-y_j) * β_j
where k is a kernel function (say, a Gaussian) of deviation s.
"""
x_i = x[:,None,:] # Shape (N,d) -> Shape (N,1,d)
y_j = y[None,:,:] # Shape (M,d) -> Shape (1,M,d)
xmy = x_i - y_j # (N,M,d) matrix, xmy[i,j,k] = (x_i[k]-y_j[k])
if kernel == "gaussian" : K = torch.exp( - (xmy**2).sum(2) / (2*(s**2)) )
elif kernel == "laplace" : K = torch.exp( - xmy.norm(dim=2) / s )
elif kernel == "energy" : K = - xmy.norm(dim=2)
return K @ β_j.view(-1,1) # Matrix-vector product

Using a kernel norm

Total Variation: a first dual norm. Now, which cost function Cost(αt, β) are we going to
choose to drive our simple optimization routine? Given two measures α and β on Rd, one of the
simplest distance that can be defined is the Total Variation

dTV(α, β) = ‖α− β‖?∞ = sup
‖f‖∞61

∫
fdα−

∫
fdβ,

using the dual norm on L∞(Rd,R). Unfortunately, this formula is not suited at all to sampled,
discrete probability measures with non-overlapping support: If α =

∑
i αi δxi and β =

∑
j βj δyj

with {xi, . . . } ∩ {yj , . . . } = ∅, one can simply choose a function f such that

∀ i, f(xi) = +1 and ∀ j, f(yj) = −1

to show that

dTV(α, β) = |α|+ |β| = 2 as soon as supp(α) and supp(β) do not overlap.

The gradient of the Total Variation distance between two sampled measures is thus completely
uninformative, being zero for almost all configurations.

Smoothing measures to create overlap. How can we fix this problem? An idea would be to
choose a blurring function g, and compare the blurred functions g ? α and g ? β by using, say,
an L2 norm:
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d(α, β) = ‖g ? (α− β)‖22 = 〈g ? (α− β), g ? (α− β)〉2.

But then, if we define k = g̃ ? g, where g̃ = g ◦ (x 7→ −x) is the mirrored blurring function, one gets

dk(α, β) = 〈g ? (α− β), g ? (α− β)〉2 = 〈α− β, k ? (α− β)〉 = ‖α− β‖2k.

Assuming a few properties on k (detailed below), dk is the quadratic norm associated with the
k-scalar product between measures:

〈α, β〉k = 〈α, k ? β〉.

More specifically,

〈∑
i

αi δxi ,
∑
j

βj δyj

〉
k

=
〈∑

i

αi δxi ,
∑
j

βj
(
k ? δyj

)〉
(13.5)

=
〈∑

i

αi δxi ,
∑
j

βj k( · − yj)
〉

=
∑
i,j

k(xi − yj)αiβj . (13.6)

In [8]: # PyTorch syntax for the L2 scalar product...
def scal(α, f) :

return torch.dot(α.view(-1), f.view(-1))

def kernel_scalar_product(α_i, x_i, β_j, y_j, mode = "gaussian", s = 1.) :
Kxy_β = KP(x_i,y_j,β_j,mode,s)
return scal( α_i, Kxy_β )

Having defined the scalar product, we then simply develop by bilinearity:

1
2‖α− β‖

2
k = 1

2 〈α, α〉k − 〈α, β〉k + 1
2 〈β, β〉k.

In [9]: def kernel_distance(mode = "gaussian", s = 1.) :
def cost(α_i, x_i, β_j, y_j) :

D2 = (.5*kernel_scalar_product(α_i, x_i, α_i, x_i, mode,s) \
+.5*kernel_scalar_product(β_j, y_j, β_j, y_j, mode,s) \
- kernel_scalar_product(α_i, x_i, β_j, y_j, mode,s) )

return D2
return cost

This formula looks good: points interact with each other as soon as k(xi, yj) is non-negligible.
But if we want to get a genuine norm between measures, which hypotheses should we make on k?

This question was studied by mathematicians from the first half of the 20th century who developed
the theory of Reproducing Kernel Hilbert Spaces - RKHS. In our specific translation-invariant case
(in which we "hardcode" convolutions), the results can be summed up as follow:

– Principled kernel norms are the ones associated to kernel functions k whose Fourier
transform is real-valued and positive - think, Gaussian kernels:

∀ω ∈ Rd, k̂(ω) > 0.
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– For any such kernel function, there exists a unique blurring kernel function g such that
g ? g = k: Simply choose

ĝ(ω) =
√
k̂(ω).

– These kernels define a Hilbert norm on a subset of L2(Rd):

‖f‖2V =
∫
ω∈Rd

|f̂(ω)|2

k̂(ω)
dω = 〈k(−1) ? f , f〉

where k(−1) is the deconvolution kernel associated to k. If we define

V =
{
f ∈ L2(Rd), ‖f‖V <∞

}
,

then (V, ‖ · ‖V ) is a Hilbert space of functions endowed with the scalar product

〈f , g〉V =
∫
ω∈Rd

f̂(ω) ĝ(ω)
k̂(ω)

dω = 〈k(−1) ? f , g〉.

– We focus on kernel functions such that for all points x ∈ Rd, the evaluation at
point x is a continuous linear form on V . That is,

δx : f ∈ (V, ‖ · ‖V ) 7→ f(x) ∈ (R, | · |)

is well-defined and continuous. A sufficient condition for this is to ask that k̂ ∈ L1(Rd) and
continuous. Then, we show that the Riesz theorem identifies δx with the continuous function
k ? δx : y 7→ k(y − x):

∀ f ∈ V, f(x) = 〈δx , f〉 = 〈k ? δx , f〉V .

– Finite sampled measures can thus be identified with linear forms on V . The
k-norm is nothing but the dual norm of ‖ · ‖V :

∀α ∈ V ?, ‖α‖k =
√
〈α , k ? α〉 = sup

‖f‖V =1
〈α , f〉.

All-in-all, just like the TV distance, the kernel distance can be seen as the dual of a
norm on a space of functions. Whereas TV was associated to the infinity norm ‖ · ‖∞ on
L∞(Rd), the kernel formulas are linked to Sobolev-like norms ‖ · ‖V on spaces of k-smooth functions,
denoted by the letter V .

Exercise 1: Using the method of Lagrange multipliers (aka. théorème des extrema liés in the
French curriculum), show the last equality above (kernel norms are dual norms on Hilbert spaces of
functions).

Solution 1: We are optimizing the linear form f 7→ 〈α, f〉 on the unit V -sphere, which is a level
set of the function
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R(f) = ‖f‖2V = 〈f, k(−1) ? f〉, with gradient ∇R(f) = 2 · k(−1) ? f. (13.7)

At the optimum, we thus get a constant λ ∈ R such that

α = 2λ · k(−1) ? f i.e. f = 1
2λ︸︷︷︸
µ

k ? α. (13.8)

Then, the equation "〈f, k(−1) ? f〉 = 1" gives µ = 1/
√
〈α, k ? α〉 and finally

〈α, f〉 = µ 〈α, k ? α〉 =
√
〈α, k ? α〉. (13.9)

Exercise 2: Why can we say that RKHS generalize high-order Sobolev spaces? In dimension 1,
what is the functional space associated to the Laplace kernel

k(x, y) = e−‖x−y‖ ? (13.10)

Solution 2: Hs Sobolev norms are defined through

‖f‖2Hs = ‖f‖2L2 + ‖f ′‖2L2 + · · · + ‖f (s)‖2L2 (13.11)

= ‖f̂‖2L2 + ‖f̂ ′‖2L2 + · · · + ‖f̂ (s)‖2L2 (13.12)

=
∫
ω

(1 + |ω|2 + · · ·+ |ω|2s) |f̂(ω)|2 dω (13.13)

= 〈f, k(−1)
s ? f〉, (13.14)

with k̂s(ω) = 1/(1 + |ω|2 + · · ·+ |ω|2s). Kernel norms allow us to generalize this construction to
arbitrary (non-rational) spectral profiles, such as that of the Gaussian kernel. Going further, we
could even consider kernels which are not translation-invariant, leaving the comfort of Fourier
analysis to handle realistic, inhomogeneous situations.

On a side note: in dimension 1, since the Fourier transform of x 7→ e−|x| is given by ω 7→ 1/(1 +ω2)
up to a constant multiplicative factor, we can identify the RKHS associated to this kernel with the
classic Sobolev space H−1, dual of the space H1 of square-integrable functions with square-integrable
derivative.

Exercise 3: What can you say about the Energy Distance kernel

k(x, y) = −‖x− y‖ ? (13.15)

Does it satisfy the hypotheses above?

Solution 3: In dimension 1, the Fourier transform of x 7→ −|x| is given by an improper integral,
ω 7→ 1/ω2. Consequently, it lies a bit outside of the simple theory of positive definite kernels:
we can only say that it defines a conditionally positive definite kernel, and a meaningful norm
between measures which have the same mass - thus avoiding the problem of evaluating the Fourier
transform of k ? (α− β) at ω = 0.
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In [10]: gradient_flow(α_i, x_i, β_j, y_j, kernel_distance("gaussian", s=.1) )

In [11]: gradient_flow(α_i, x_i, β_j, y_j, kernel_distance("gaussian", s=.5) )
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In [12]: gradient_flow(α_i, x_i, β_j, y_j, kernel_distance("laplace", s=.5) )

In [13]: gradient_flow(α_i, x_i, β_j, y_j, kernel_distance("energy") )
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Exercise 4: Compare the behaviours of these kernel norms for different formulas and scales.
Discuss.

Solution 4: Two parameters influence the final results: - the spectral bandwidth of the kernel
function k; if k is smooth, k̂(ω) converges towards 0 at infinity and the kernel norm becomes blind
to high frequencies; we only register α roughly onto β - the spatial support of the kernel function;
is k is too narrow, the xi stop interacting with the yj ’s and simply spread out to minimize the
auto-correlation term 〈α, k ? α〉.

Noticeably, we observe a screening effect: some particles feel a very low gradient and only
converge slooooowly towards β. This is best explained with the vocabulary of electrostatics: here,
the xi’s are particles with charge +αi, the yj ’s have a negative charge −βj , the kernel function
represents the interaction potential and the kernel norm is the total energy of the system.

The total force on a given particle xi is then given as the sum of a repulsion term from the other
xi’s, and the attraction towards the yj ’s. Since particles on the left end of α are repulsed nearly
as much as they are attracted, they only move slowly towards the target.

In practice, to match sampled measures, we tend to choose kernel functions with: - A null
derivative at zero, and a large enough "blurring radius" to prevent overfit on the precise sampled
locations of diracs. - A heavy tail, to prevent isolated parts of αt and β from being "forgotten" by
the gradient.

Using a Maximum-likelihood estimator

In the previous section, we’ve seen how to compare measures by seeing them as linear forms on a
Sobolev-like space of functions. An other idea would be to see the measure β as the realization
of an i.i.d. sampling according to the measure α, with likelihood

Likelihoodα(β) = Likelihoodα
(∑

j

βjδyj

)
=
∏
j

Likelihoodα(yj)βj .

But which value could we attribute to the "likelihood of drawing y, given the measure α"? Since α is
discrete, supported by the xi’s, interpreting it as a density wouldn’t be practical at all... Thankfully,
there’s a simple solution: we could convolve α with a simple density function k > 0 of mass 1 -
say, a Gaussian - and thus end up with a probability measure k ? α which is absolutely continous
wrt. the Lebesgue measure, with density

Likelihoodk?α(y) =
∑
i

k(y − xi)αi > 0 for all y ∈ Rd.

From a probabilistic point of view, using this density function as a "model" is equivalent to assuming
that the random variable y is generated as a sum x + w, where x and w are two independent
variables of laws equal to α and k ·Lebesgue(Rd). If k is a Gaussian function, we speak of Gaussian
Mixture Models.

Given α, β and a symmetric kernel function k, we can then choose to maximize the likelihood
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Likelihoodk?α(β) =
∏
j

(∑
i

k(xi − yj)αi
)βj

,

i.e. to minimize the negative log-likelihood

dML,k(α, β) = −
∑
j

log
(∑

i

k(xi − yj)αi
)
βj .

Information theoretic interpretation. Before going any further, we wish to stress the link
between maximum-likelihood estimators and the Kullback-Leibler divergence. In fact, if we assume
that a measure βgen is absolutely continuous wrt. the Lebesgue measure λ, then

H(βgen |α) =
∫

log
(
dβgen

dα

)
dβgen =

∫
log
(
dβgen/dλ
dα/dλ

)
dβgen (13.16)

=
∫

log
(
dβgen

dλ

)
dβgen −

∫
log
(
dα
dλ

)
dβgen (13.17)

i.e. H(βgen |α) = H(βgen |λ) −
∫

log
(
dα
dλ

)
dβgen (13.18)

so that −
∫

log
(
dα
dλ

)
dβgen = H(βgen |α)−H(βgen |λ). (13.19)

Hence, as the sampled measure β weakly converges towards a measure βgen,

dML,k(α, β) −→ H(βgen | k ? α) − H(βgen |λ).

As a function of α, this formula is minimized if and only if k ? α = βgen.

Practical implementation. As noted by the careful reader, the maximum-likelihood cost
dML,k(α, β) can be computed as the scalar product between the vector of weights (βj) and the
pointwise logarithm of the Kernel Product KP

(
(yj), (xi), (αi)

)
- up to a negative sign. So, is

using our KP routine a sensible thing to do? No, it isn’t.

Indeed, if a point yj is far away from the support {xi, . . . } of the measure α,
∑
i k(xi − yj)αi

can be prohibitively small. Just remember how fast a Gaussian kernel decreases to zero! If this
sum’s order of magnitude is close to the floating point precision (for float32 encoding, around
10−7 ' e−42), applying to it a logarithmic function is just asking for trouble.

Additive v. Multiplicative formulas. In the previous section, we defined the kernel distance
dk and never encountered any accuracy problem. This is because, as far as sums are concerned,
small "kernel’s tail" values can be safely discarded - providing a reasonable balance in the weights’
distribution. However, when using maximum likelihood estimation, all the values aremultiplicated
with each other: the smaller ones cannot be "neglected" anymore, as they very much determine
the magnitude of the whole product. In the log-domain, near-zero values of the density

(
k ? α

)
(yj)

have a large influence on the final result!
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Numerical stabilization. We now understand the importance of magnitude-independent
schemes as far as multiplicative formulas are concerned. Programs which do not spiral out of
control when applied to values of the order of 10−100. How do we achieve such robustness? For
arbitrary expressions, the only solution may be to increase the memory footprint of floating-point
numbers...

But in this specific "Kernel Product" case, a simple trick will do wonders: using a robust log-
sum-exp expression. Let’s write

Ui = log(αi), Ci,j = log
(
k(xi − yj)

)
(given as a stable explicit formula).

Then, the log-term in the ML distance can be written as

log
(
k ? α

)
(yj) = log

(∑
i

k(xi − yj)αi
)

= log
(∑

i

exp
(
Ci,j + Ui

))
.

This expression lets us see that the order of magnitude of
(
k ? α

)
(yj) can be factored out

easily. Simply compute

Mj = max
i
Ci,j+Ui, and remark that log

(
k?α

)
(yj) = Mj + log

(∑
i

exp
(
Ci,j+Ui−Mj

))
.

As the major exponent has been pulled out of the sum, we have effectively solved our accuracy
problems. In practice, we can simply use the .logsumexp() reduction provided by recent versions
of the PyTorch library.
In [14]: def KP_log(x,y,β_j_log, p = 2, blur = 1.) :

x_i = x[:,None,:] # Shape (N,d) -> Shape (N,1,d)
y_j = y[None,:,:] # Shape (M,d) -> Shape (1,M,d)
xmy = x_i - y_j # (N,M,d) matrix, xmy[i,j,k] = (x_i[k]-y_j[k])
if p==2 : C = - (xmy**2).sum(2) / (2*(blur**2))
elif p==1 : C = - xmy.norm(dim=2) / blur
return (blur**p)*(C + β_j_log.view(1,-1)).logsumexp(1,keepdim=True)

In [15]: def kernel_neglog_likelihood(p=2, blur = 1.) :
def cost(α_i, x_i, β_j, y_j) :

loglikelihoods = KP_log(y_j, x_i, α_i.log(), p, blur)
dAB = -scal(β_j, loglikelihoods)
return dAB

return cost

Exercise 5: Why did we put a multiplicative factor blur**p in the definition of KP_log? What
influence does it have on the gradient flow?

Solution 5: Denoting the blur by the standard letter σ, we’ve defined KP_log as a sampler of a
function f such that

f(x) = σp log
∫
y

exp(−‖x−y‖
p

p σp )dβ(y) (13.20)

Since β is a probability measure, f(x) thus scales as 1
p‖x− y‖

p away from y ∼ β; its gradient will
then scale nicely for all values of σ, and we will get comparable flow dynamics.
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In [16]: gradient_flow(α_i, x_i, β_j, y_j, kernel_neglog_likelihood(p=2, blur=.5) )

In [17]: gradient_flow(α_i, x_i, β_j, y_j, kernel_neglog_likelihood(p=2, blur=.1) )
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Exercise 6: How would you describe the behaviour of this Cost functional? In the blur→ 0 limit,
which simple formula do you recognize? What about the blur→ +∞ limit? Can you explain the
mode collapse observed for large values of the blurring parameter?

Solution 6: As implemented above,

dML,k(α, β) = 〈β(y) , −σp log
∫

exp
(
− ‖x−y‖

p

pσp

)
dα(x) 〉, (13.21)

which can be rewritten as

〈β(y) , min
x∼α,σp

1
p‖x− y‖

p 〉, (13.22)

where the SoftMin operator minε is defined through

min
x∼α,ε

ϕ(x) = −ε log
∫

exp
(
− ϕ(x)/ε

)
dα(x) (13.23)

ε→ 0−−−−→ min
x∈supp(α)

ϕ(x) (13.24)

ε→+∞−−−−→
∫
ϕdα. (13.25)

As we recognize a smooth interpolation between the min and the sum reduction, we can
now make sense of the behavior of the GMM-MaxLikelihood functional:

1. When σ → 0,

dML,k(α, β) → 1
p 〈β(y) , min

i=1..N
‖y − xi‖p 〉 (13.26)

which can be understood as a sum-Hausdorff loss that is only interested in putting some
points xi in the neighborhood of β.

2. When σ → +∞,

dML,k(α, β) →
∫∫

1
p‖y − x‖

p dα(x)dβ(y) = 〈β , 1
p‖ · ‖

p ? α 〉, (13.27)

which is minimized when α is a Dirac atom located at the median (p=1) or mean
(p=2) value of the target β.

Exercise 7: One could be tempted to symmetrize the maximum-likelihood cost, as implemented
below. Discuss.
In [18]: def kernel_sym_neglog_likelihood(p=2, blur=1) :

def cost(α_i, x_i, β_j, y_j) :
a_j = -KP_log(y_j, x_i, α_i.log(), p, blur)
b_i = -KP_log(x_i, y_j, β_j.log(), p, blur)
return scal(α_i,b_i) + scal(β_j, a_j)

return cost
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In [19]: gradient_flow(α_i, x_i, β_j, y_j, kernel_sym_neglog_likelihood(p=1, blur=.1) )

In [20]: def kernel_full_neglog_likelihood(p=2, blur=1) :
def cost(α_i, x_i, β_j, y_j) :

a_i = -KP_log(x_i, x_i, α_i.log(), p, blur)
a_j = -KP_log(y_j, x_i, α_i.log(), p, blur)
b_i = -KP_log(x_i, y_j, β_j.log(), p, blur)
b_j = -KP_log(y_j, y_j, β_j.log(), p, blur)

return scal(α_i, b_i-a_i) + scal(β_j, a_j-b_j)
return cost
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In [21]: gradient_flow(α_i, x_i, β_j, y_j, kernel_full_neglog_likelihood(p=2, blur=.05) )

In [22]: gradient_flow(α_i, x_i, β_j, y_j, kernel_full_neglog_likelihood(p=1, blur=.05) )
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Solution 7: Both "fixes" rely on smooth distance fields

a(y) = min
x∼α,σp

1
p‖x− y‖

p, b(x) = min
y∼β,σp

1
p‖x− y‖

p. (13.28)

The first formula,

dML-sym(α, β) = 〈α , b 〉 + 〈β , a 〉, (13.29)

is the sum of terms that mean that "the xi’s should be close to β" and "the yj ’s should be close to
α"... but stills suffers from mode collapse. The second fix,

dML-full(α, β) = 〈α− β , b− a 〉 = 〈α− β , log k ? α
k ? β

〉, (13.30)

with k(x) = exp(−‖x‖p/pσp) is a better try as it mimicks the quadratic-like formula of kernel
norms.

Unfortunately though, it can be shown simply that this "log-kernel", Hausdorff-like formula does
not define a positive definite divergence between measures. Generically, there exists a measure
α 6= β such that

dML-full(α, β) < dML-full(β, β) = 0. (13.31)

Using an Optimal Transport distance

In the previous two sections, we’ve seen how to compute kernel distances, which are the duals
of Sobolev-like norms on space of functionals, as well as Maximum Likelihood scores for
Gaussian-Laplace Mixture Models, which can be understood as soft generalizations of the integrated
Hausdorff/Chamfer distance.

Last but not least, we now show how to compute Optimal Transport plans efficiently, ending up
on Wasserstein-like distances between unlabeled measures.

Getting used to Optimal Transport. The modern OT theory relies on a few objects and
problems that we now briefly recall. For a complete reference on the subject, you may find useful
Filippo Santambrogio’s Optimal Transport for Applied Mathematicians (2015) or Peyré-Cuturi’s
Computational Optimal Transport (2017), depending on your background.

Kantorovitch problem. Given α =
∑
i αi δxi and β =

∑
j βj δyj we wish to find a Transport

Plan π (a measure on the product {xi, . . . } × {yj , . . . }, encoded as an N-by-M matrix (π(xi ↔
yj)) = (πi,j)) which is a solution of the following optimization problem:

minimize 〈π,C〉 =
∑
i,j

πi,jCi,j

https://hal.archives-ouvertes.fr/hal-01827184/
https://www.math.u-psud.fr/~filippo/OTAM-cvgmt.pdf
https://optimaltransport.github.io/
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subject to: ∀ i, j, πi,j > 0,
∑
j

πi,j = αi,
∑
i

πi,j = βj ,

where the Cost matrix Ci,j = c(xi, yj) encodes the cost of moving a unit mass from point xi to
point yj .

Wasserstein distance. If one uses c(xi, yj) = ‖xi−yj‖2, the optimal value of the above problem is
called the Wasserstein distance dWass(α, β) between measures α and β. Its theoretical properties
are plentiful... But can we compute it efficiently? In the general high-dimensional case: no,
we can’t. Indeed, the Kantorovitch problem above is a textbook Linear optimization problem,
combinatorial by nature. Even though the simplex algorithm or other classical routines output
exact solutions, they do so at a prohibitive cost: at least cubic wrt. the number of samples.

Entropic regularization. Thankfully, we can however compute approximate transport
plans at a much lower cost. Given a small regularization parameter ε, the idea is to add an
entropic barrier to the Linear Kantorovitch problem and solve

minimize 〈π,C〉+ εKL(π, α⊗ β) =
∑
i,j

πi,jCi,j + ε
∑
i,j

[
πi,j log πi,j

αiβj
− πi,j + αiβj

]
subject to: ∀ i, j, πi,j > 0,

∑
j

πi,j = αi,
∑
i

πi,j = βj .

An important property of the x 7→ x log x − x + 1 function is that it has a −∞ derivative at
location x = 0. Since the main objective function 〈π,C〉 is linear wrt. the πi,j ’s, this implies
that the optimal value of the regularized problem is attained in the relative interior of the
simplex, defined by the constraints:

π > 0, π1 = α, πT 1 = β.

Hence, the optimum is necessarily reached at a critical point of our constrained problem.
At the optimum π?, the gradient of the objective can thus be written as a linear combination of the
equality constraints’ gradients:

∃ (f?i ) ∈ RN, (g?j ) ∈ RM, ∀ i, j, Ci,j + ε log
π?i,j
αiβj

= f?i + g?j

where f?i is the coefficient associated to the constraint
∑
j πi,j = αi, as g?j is linked to

∑
i πi,j = βj .

All in all, we see that the optimal transport plan (π?i,j) ∈ RN×M
+ is characterized by a single pair

of vectors (f?, g?) ∈ RN+M:

∀ i, j, log
π?i,j
αiβj

= (f?i + g?j − Ci,j)/ε

i.e. π? = diag(αiUi)Ki,j diag(Vjβj)

with Ui = exp(f?i /ε), Vj = exp(g?j /ε), Ki,j = exp(−Ci,j/ε).
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Consequences of this "critical point equation" are twofold:

– The dimension of the space in which we should search the optimal transport plan
is greatly reduced, jumping from (M×N) to (M + N) - the adjoint variables associated to
the equality constraints. Furthermore, the optimal value of the cost can be computed using
this cheap formula:

OTε(α, β) = 〈π?, C〉+ εKL(π?, α⊗ β) =
∑
i,j

π?i,j (f?i + g?j ) = 〈α, f?〉+ 〈β, g?〉. (13.32)

– The optimal transport plan can be expressed as the positive scaling of a positive kernel
matrix K. But in the meantime, it should also satisfy the two marginal constraints which
can be written in terms of (Ui) and (Vj):

Ui = 1
(K(V β))i

, Vj = 1
(KT (Uα))j

.

As was remarked by a long trail of authors (from Schrödinger’s original work, to economy and
statistical physics in the 60-80-90-00’s, to object recognition in the 90-00’s and more recently in the
machine learning literature) this reformulation of (entropic regularized) Optimal Transport can
be linked to the Sinkhorn Theorem: It admits a unique solution (U, V ) ∈ RN+M

>0 , which can be
approached iteratively by applying the steps

U (0) = (1, . . . , 1), V (0) = (1, . . . , 1), V (n+1) = 1
KT (U (n)α)

, U (n+1) = 1
K(V (n+1)β)

.

These are nothing but coordinate ascent steps on the dual maximization problem:

OTε(α, β) = max
f,g
〈α, f〉 + 〈β, g〉 − ε 〈α⊗ β, e(f⊕g−C)/ε − 1〉. (13.33)

Hence, one can solve the regularized Optimal Transport problem by iterating kernel
products (aka. discrete convolutions) and pointwise divisions, on variables which have
the same memory footprint as the input measures!

Sinkhorn algorithm in the log domain

Is the scheme presented above stable enough? No, it isn’t. Indeed, as discussed in the section
dedicated to Maximum likelihood estimators, if we use kernels in multiplicative formulas,
we should favor log-domain implementations.
In [23]: D = lambda x : x.detach() # use the formula at convergence for the gradient

def ot_reg(p = 2, blur = .05, scaling=.5 ) :
def cost(α_i, x_i, β_j, y_j) :

# ε-scaling heuristic (aka. simulated annealing):
# let ε decrease across iterations, from 1 (=diameter) to the target value

https://hal.archives-ouvertes.fr/hal-00849930/document
https://www.jstor.org/stable/20052128
https://www.researchgate.net/publication/44379141_Optimal_Spatial_Interaction_and_the_Gravity_Model
https://www.ics.uci.edu/~welling/teaching/271fall09/InvidibleHandAlg.pdf
https://hal.archives-ouvertes.fr/hal-00473173
https://papers.nips.cc/paper/977-new-algorithms-for-2d-and-3d-point-matching-pose-estimation-and-correspondence.pdf
https://www.cise.ufl.edu/~anand/pdf/cvpr2000_final.pdf
https://arxiv.org/abs/1306.0895
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scales = [ tensor([np.exp(e)]) for e in
np.arange(1, np.log(blur), np.log(scaling)) ] + [blur]

# Solve the OT_ε(α,β) problem
f_i, g_j = torch.zeros_like(α_i), torch.zeros_like(β_j)
for scale in scales :

g_j = -KP_log(y_j, D(x_i), D(f_i/scale**p + α_i.log()), p=p, blur=scale)
f_i = -KP_log(x_i, D(y_j), D(g_j/scale**p + β_j.log()), p=p, blur=scale)

# Return the dual cost OT_ε(α,β), assuming convergence in the Sinkhorn loop
return scal(α_i, f_i) + scal(β_j, g_j)

return cost

Exercise 8: Explain why the implementation above is correct and numerically stable.

Solution 8: On the dual variables f (n) = ε logU (n) and g(n) = ε log V (n), the Sinkhorn iterations
read

g
(n+1)
j = −ε logKT (U (n)α) (13.34)

= −ε log
N∑
i=1

exp
(
− ‖xi − yj‖p/pε+ f

(n)
i /ε+ logαi

)
(13.35)

g
(n+1)
j = min

x∼α,ε

[ 1
p‖yj − x‖

p − f (n)(x)
]
, (13.36)

(13.37)

f
(n+1)
i = −ε logK(V (n+1)β) (13.38)

= −ε log
M∑
j=1

exp
(
− ‖xi − yj‖p/pε+ g

(n+1)
j /ε+ log βi

)
(13.39)

f
(n+1)
i = min

y∼β,ε

[ 1
p‖xi − y‖

p − g(n+1)(y)
]
, (13.40)

which is what is implemented here with ε = σp. Crucially, if the log-sum-exp reduction is
implemented properly, this code won’t suffer from numerical overflows even if U (n) = e±100...

Exercise 9: Link this implementation with the log-likelihood cost presented in the previous section.
Intuitively, could you explain the behaviour of this algorithm? Why is it much faster than the
"standard" Sinkhorn algorithm, with a fixed value of ε? How could you improve it further?

Solution 9: As detailed in the previous answer, the Sinkhorn iterations can now be understood
with quantities that are homogeneous to the cost 1

p‖x−y‖
p: the prices f and g. The minε updates

now resemble closely those of standard combinatorial methods such as the Auction algorithm, and
can be studied accordingly: see Kosowsky and Yuille (1993) and Schmitzer (2016) for reference.

Two intuitions arise from this analysis:

1. Before reaching convergence, Sinkhorn updates typically make steps of size ε in the maximiza-
tion of the dual cost. By using larger values of ε in the first few iterations, we make larger
strides and reach quickly the fine-tuning, end-game regime.

2. Optimal Transport is fundamentally amultiscale problem: a rough transport plan computed
at a coarse scale can always be refined into a finer correspondence. This is what the ε-scaling
heuristic is all about, as we lower the amount of blur (or temperature) from one iteration to
the other.

To improve this algorithm further, we could remark that the updates at any iteration are typically
"ε-smooth". In the first few iterations, we could thus work on subsampled measures and develop a
fully-fledged multiscale algorithm.

https://en.wikipedia.org/wiki/Auction_algorithm
https://www.ics.uci.edu/~welling/teaching/271fall09/InvidibleHandAlg.pdf
https://arxiv.org/abs/1610.06519
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In [24]: gradient_flow(α_i, x_i, β_j, y_j, ot_reg(p=2, blur=.05) )

In [25]: gradient_flow(α_i, x_i, β_j, y_j, ot_reg(p=2, blur=.25) )
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Exercise 10: In the experience above, can you explain the entropic bias, which pushes αt away
from β, onto a medial-axis like measure with a narrow support?

Solution 10: We know that OTε(α, β) is (roughly) equal to the transport cost associated to a
fuzzy transport plan

π? = exp 1
ε (f? ⊕ g? − C) · α⊗ β, (13.41)

which typically links any point xi to an ε-ball of points yj in β. As we minimize the sum of (squared)
lengths associated to this fuzzy "system of springs", points xi tend to converge towards the median
(if p=1) or mean (if p=2) value of their ε-mates, which often lies deep inside the convex hull of
β’s support.

To solve this problem, an idea is to define the Sinkhorn divergence in a way that mimicks the
bilinear expansion of squared Euclidean norms:

Sε(α, β) = OTε(α, β) − 1
2OTε(α, α) − 1

2OTε(β, β). (13.42)

Most interestingly, we then get that Sinkhorn divergences interpolate between Optimal
Transport and kernel norms:

OTC(α, β) 0←ε←−−− Sε(α, β) ε→+∞−−−−−→ 1
2‖α− β‖

2
−C . (13.43)

In 2018, it was shown that under mild assumptions, Sε defines a symmetric, positive-definite
divergence which is convex with respect to each variable and metrizes the convergence in law.
In particular, the entropic bias is removed and our gradient flow converges towards β, up to the
high-frequency components lost when seeing both measures through the blurring convolution kernel

kε(x, y) = e−C(x,y)/ε. (13.44)

In [26]: def sinkhorn_divergence(p = 2, blur = .05, scaling=.5 ) :
def cost(α_i, x_i, β_j, y_j) :

# ε-scaling heuristic (aka. simulated annealing):
# let ε decrease across iterations, from 1 (=diameter) to the target value
scales = [ tensor([np.exp(e)]) for e in

np.arange(0, np.log(blur), np.log(scaling)) ] + [blur]

# 1) Solve the OT_ε(α,β) problem
f_i, g_j = torch.zeros_like(α_i), torch.zeros_like(β_j)
for scale in scales :

g_j = - KP_log(y_j, D(x_i), D(f_i/scale**p + α_i.log()), p=p, blur=scale)
f_i = - KP_log(x_i, D(y_j), D(g_j/scale**p + β_j.log()), p=p, blur=scale)

# 2) Solve the OT_ε(α,α) and OT_ε(β,β) problems
scales_sym = [scale]*3 # Symmetric updates converge very quickly
g_i, f_j = torch.zeros_like(α_i), torch.zeros_like(β_j)
for scale in scales_sym :

g_i=.5*(g_i - KP_log(x_i, x_i, g_i/scale**p + α_i.log(), p=p, blur=scale))

https://arxiv.org/abs/1810.08278
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f_j=.5*(f_j - KP_log(y_j, y_j, f_j/scale**p + β_j.log(), p=p, blur=scale))
# Final step, to get a nice gradient in the backprop pass:
g_i = - KP_log(x_i, D(x_i), D(g_i/scale**p + α_i.log()), p=p, blur=scale)
f_j = - KP_log(y_j, D(y_j), D(f_j/scale**p + β_j.log()), p=p, blur=scale)

# Return the "dual" cost :
# S_ε(α,β) = OT_ε(α,β) - ½OT_ε(α,α) - ½OT_ε(β,β)
# = (<α,f_αβ>+<β,g_αβ>) - <α,g_αα> - <β,f_ββ>
return scal(α_i, f_i - g_i) + scal(β_j, g_j - f_j)

return cost

Exercise 11: Explain why the implementation above is correct.

Solution 11: We’ve already detailed the step 1 (OTε(α, β) problem) and now focus on the
symmetric case of the α↔ α problem (β ↔ β can be handled identically). We know that

OTε(α, α) = max
f,g
〈α, f + g〉 − ε 〈α⊗ α, e(f⊕g−C)/ε − 1〉 (13.45)

= 2 max
g
〈α, g〉 − ε

2 〈α⊗ α, e
(g⊕g−C)/ε − 1〉, (13.46)

because the (f, g) problem is concave and symmetric with respect to a permutation of the dual
potentials: there exists a solution (f = g, g) on the diagonal of the space RN × RN of dual pairs.

How can we find such a solution efficiently? Given a current estimate (g(n), g(n)), we know that
defining

g
(n+1)
i = min

x∼α,ε

[ 1
p‖xi − x‖

p − g(n)
i

]
(13.47)

and jumping to (g(n), g(n+1)) or (g(n+1), g(n)) would bring us closer to the optimum, as this standard
Sinkhorn update is a coordinate ascent step on the dual problem.

Going further, averaging these two updates by setting

g(n+1) = 1
2 (g(n) + g(n+1)) (13.48)

and jumping to (g(n+1), g(n+1)) is an even better idea: thanks to the concavity of the dual objective,
we know that this competitor is at least as good as (g(n), g(n+1)) and (g(n+1), g(n))... And at the
same time, it belongs to the diagonal of the space of dual pairs, where the global optimum is known
to lie. Empirically, we always converge to a good enough solution in three or four steps.
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In [27]: gradient_flow(α_i, x_i, β_j, y_j, sinkhorn_divergence(p=2, blur=.01) )

In [28]: gradient_flow(α_i, x_i, β_j, y_j, sinkhorn_divergence(p=2, blur=.2) )
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In [29]: gradient_flow(α_i, x_i, β_j, y_j, sinkhorn_divergence(p=1, blur=.2) )

Exercise 12: Discuss the behaviour of Sε for varying values of the parameters.

Solution 12: When ε is small, we retrieve the behavior of the "true" Wasserstein
distance at an affordable cost. However, as ε grows, Sε behaves more and more like the kernel
norm 1

2‖α− β‖
2
− 1
p‖·‖

p
:

– if p=2, ‖α − β‖2−‖·‖2/2 = 1
2‖mean(α) −mean(β)‖22: the divergence becomes blind to fine

details and only registers the first moments with each other.
– if p=1, 1

2‖α − β‖
2
−‖·‖ is the Energy distance, a kernel norm that was studied in the first

section and presents screening artifacts.

Fortunately, in all cases, the entropic bias is alleviated and we do not observe any mode collapse.

Conclusion

In this notebook, we presented three major families of "distance" costs between probability measures:

– Kernel distances (also known as Maximum Mean Discrepancies), which descend from dual
norms on Sobolev-like spaces of functions.

– Empirical log-likelihoods of mixture models, which are smooth generalizations of Hausdorff-
like distances.
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– Sinkhorn divergences, designed as cheap approximations of Optimal Transport costs; they
can be linked to dual norms on Lipschitz-like spaces of functions.

Interestingly, the three of them use the same atomic operation: the Kernel Product, possibly
implemented in the log-domain. As it is a GPU-friendly operation, using these formulas results in
scalable algorithm: use a vanilla PyTorch implementation for clouds of <2,000 samples, and the
powerful KeOps library for larger (10,000-1,000,000) problems.

But which formula should we use in practical applications? This is the main question, that can
only be answered with respect to specific applications and datasets.

A rule of thumb: kernel distances and log-likelihoods are both cheap, and differ in the way they
handle outliers and isolated xi’s or yj ’s. With kernel distances, they are nearly forgotten as the
tail of the kernel function k goes to zero; in the likelihood case, though, since − log k(x) → +∞
when x grows, outliers tend to have a large influence on the overall cost and its gradient. More
recently introduced, Sinkhorn distances tend to be both interpretable and robust... At a higher
computational cost (multiscale tree-based approaches are super-efficient in dimensions 2 or 3, but
break down for high-dimensional problems). Computing a full transport plan to simply get a gradient
is overkill for most applications, and future works will certainly focus on cheap approximations
that interpolate between OT and simpler theories.

To get your own intuition on the subject, feel free to re-run this notebook with measures sampled
from your own sketches!

https://www.kernel-operations.io


SESSION 14 Going further

A quick overview. In the past few months, Gabriel and myself guided you through a math-
ematical tour of data science, starting from standard wavelet analysis to end up on prospective
Wasserstein distances. We taught you how to define and implement multiscale representations
suited to signal processing tasks; you should now have 1001 methods in mind to perform gradient
descent on non-smooth objectives; and, most importantly, you now have a clear understanding
of a typical applied maths research field.

Contrary to a common prejudice in the French prépa system, “real-life problem” does not rhyme
with “simplistic ideas”! Today, there are tons of unanswered mathematically interesting questions
related to applied problems, be it in analysis, geometry, probabilities or even algebra. Modern
computational tools relieve mathematicians from the burden of low-level implementation, and allow
us to focus on what we do best: building up significant abstractions.

The cold truth about academic life. As you are about to become professional scientists, you
guys must know where you’re heading to. In the deceiving comfort of the “rue d’Ulm”, this is
somewhat easy to ignore... But pursuing a career in fundamental mathematics is very much akin to
the struggle of becoming a professional musician.

In academia, whichever field you look at, no more than a handful of people per year get the chance
to pick their dream job, with access to widespread recognition and motivated pupils. Meanwhile,
the owerwhelming majority of scholars find their joy in a confidential practice of research, as they
put bread on the table by lecturing mediocre, uninterested students.

Opportunities for applied mathematicians. This way of life is eminently respectable... But
doesn’t suit everybody. Providentially, applied maths offer you a wide range of possible career
paths to consider. First of all, as evidenced by the charts below, getting an academic position
is comparatively easier in applied fields. You simply get more fundings if you can argue that
your work will be to the taxpayer’s benefit.

Furthermore, applied mathematicians get access to a host of fullfilling research positions in
the industry. In exchange for the fact that they choose what topic you’re working on (like an
advisor, really), companies are eager to offer you a dramatic pay increase and top-notch research
facilities. All of this may seem remote... But at some point, having these options at hand may
dispense you from having to choose between your family and your career.
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(a) Maîtres de conférence.
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Applied Maths
Fundamental Maths

(b) Professors.

Figure 14.1: University positions available in France, depending on the field. One should also take
into account the CNRS (all fields) and INRIA (applied maths + CS only), which offer about 20
“Chargé de recherche” and 10 “Directeur de recherche” positions per year each.
Data available on the reference website, postes.smai.emath.fr/2018/OUTILS/bilans.php.
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Choosing your Master 2 program. If you’re so passionate about pure maths that you think
they’re worth putting your career perspectives in jeopardy, that’s great; listen to your heart. But
otherwise, for your own sake, consider giving a chance to applied M2 programs. Off the
top of my head, in the Paris region, you have access to the MSV (biology), the MASH (machine
learning and social sciences), the MVA (machine learning and image processing)...
So do not hesitate, have a look at their webpages :-)

A selection of lectures from the MVA program. To help you to find relevant topics, here
is a shortlist of MVA courses which may suit your mathematical taste: I ranked them by difficulty,
ranging from ( ? ) “easy enough” to ( ? ? ? ) “just as challenging as regular DMA courses”.

If you liked Gabriel’s course, why wouldn’t you try to attend one of them in the coming semester?
Obviously, you could also try out the CS and engineering-oriented classes!
Further information can be found on the program’s website:

math.ens-paris-saclay.fr/version-francaise/formations/master-mva/
contenus-/master-mva-cours-2017-2018-161721.kjsp

October-January:

? Introduction to medical image analysis. Get familiar with the specific problems encoun-
tered in the medical imaging industry, and see how mathematicians can help to tackle such
life-impacting problems.

? Sub-pixel image processing. Become an FFT guru!
? ? Topological data analysis for imaging and machine learning. Extract relevant infor-

mation from noisy datasets by computing invariants defined in the course of algebraic topology.
? ? Sparsity and compressed sensing. Become an L1-norm guru...

But you know that already ;-)
? ? ? Computational statistics. Discover the mathematical results behind widely used statistical

algorithms such as stochastic gradient descent, EM, Markov Chain Monte Carlo samplers
and approximated Bayesian computing methods.

? ? ? Mathematical methods for neurosciences. In-depth study of biological neurons, using
both deterministic (bifurcations) and stochastic (Itô calculus) theories of dynamical systems.
Fascinating!

January-April:

? Statistical computing on manifolds and data assimilation. From medical images to
anatomical and physiological models. Very similar to the “Introduction to medical image
analysis” course, albeit focused on geometrical problems.

? ? Longitudinal data analysis. How do we study time-dependent series of structured data
points? A textbook problem is that of predicting the evolution of Alzheimer’s disease, from a
few brain MRI scans.

? ? Deformable models and geodesic methods for image analysis. Learn to segment im-
age regions – Gabriel’s course in the second semester.

? ? ? Inverse problems in imagery. How do we reconstruct geological profiles from seismic data?
The lecturer was in charge of the “Stochastic Processes” course at the ENS a few years ago.

? ? ? Geometry and shapes spaces. Study groups of diffeomorphisms of the ambient space as
infinite-dimensional Riemannian manifolds, and use the Hamiltonian characterization of
geodesics to perform non-linear analysis on populations of shapes – brain and heart MRI
scans, mostly. A personal favorite, as the lecturer is no one but my (fantastic) PhD advisor!

Contacts. Being ENS students, you have plenty of opportunities to go and speak with experienced
researchers. Don’t forget that it’s part of your professors’ duties... And that they love it! People at
the DMA will always have time to answer your questions regarding orientation and internships:
as a starting point, I would advise you to meet Amandine Véber (biology), Bertrand Maury
(flow modelling), Jean-Philippe Vert (genomic studies), Gabriel Peyré (compressed sensing,
optimal transport) and myself (medical imaging + student’s tips).

Whatever your future orientation, I wish you all the best!
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