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Recap of the previous lecture

Lecture 3 – Graphs:

• Curse of dimensionality ⟹ Statistics onwhite noise is hopeless.

• Wemust understand the intrinsic structure of our data,
even when it is embedded in a high-dimensional space of features.

• Wemay need to unwrap the manifold of plausible data samples.
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Graphs = local neighborhood structures

The K-NN graph describes
the local structure of a dataset.

Untangling a soup of edges to produce
a global understanding is hard.
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Simple archetypes [TDGC+21]

Cliques are like balls
with positive curvature.

Grids are like planes
with flat curvature.

Trees are like saddles
with negative curvature.
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Embeddingmethods such as UMAP are excellent diagnostic tools [Wil]

Visualizing the set of integer numbers
1, 2, 3, …, 8,000,000.

Visualizing the differentiation of
Hematopoietic stem cells.
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Since 2012, we have grown used to convolutional neural networks [PMC11]
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Canwe apply this methodology to higher-level descriptions? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

Simplifying a bit, each level of analysis corresponds to
a way of grouping pixelswith their neighbors.
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Today’s lecture – an active research topic

1. Geometric deep learning is not amature field:

• Convolutions on graphs and point clouds.
• A stimulating environment.
• Questionable benchmarks.

2. Personal experience feedback:

• Protein docking.
• Lung registration.

3. Trying to learn a graph structure:

• Dynamic graphs, auto-encoders and transformers.
• A continuous spectrum of models and jobs.
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Geometric deep learning
is not amature field



What is a convolution?

Convolution (i.e. weighted average of the neighboring pixels) :
Cheap generalization of the product “a ⋅ x”,
parameterized by the coefficients of a small filter 𝜑.

⋆ =

𝜑 x 𝜑 ⋆ 𝑥
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What is a convolution?

Convolutions on grids:

• Are cheap.

• Enable pattern detection and texture analysis.

• Proven track record since the 1960’s:
Gaussian blur, edge detectors, Laplacian pyramids,
wavelets, JPEG2000, convolutional neural networks…
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Message-passing on graphs [DJL+20]

x [ i, j ] ← ∑
k,l 𝜑 [ k, l ] ⋅ x [ i − k, j − l ] x [ i ] ← ∑

i↔k
𝜑(x [ i ], x[ k ], edge [ i, k ] )
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Multiscale architectures on graphs [Mal16, BBCV21]

Grid convolutions
+ downsamplings.

Graph convolutions
+ downsamplings.
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The promises of geometric deep learning

We intend to leverage the intrinsic structure of:

• Point clouds.
• Surface and volumemeshes.
• Molecular graphs, proteins.
• Social and communication networks.

Unfortunately, things are not that simple.
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Problem 1: How dowe deal with the lack of orientation? [CGC+20, NoJ07]

CNNs learn oriented
curve detectors.

Vanilla graph convolutions
define isotropic filters.

Hairy ball theorem: no
globally consistent 2D
coordinates on a sphere.
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Problem 2: How dowe deal with varying sampling densities? [SSC19]

MRI slice:
voxel size = 1 mm3.

“Hell is other people’s meshes”
– Jean-Paul Sartre

Intrinsic triangulations.
Can we use them for ML?
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Problem 3: How dowe deal with highly non-Euclidean graphs? [TDGC+21]

Downsampling a grid is easy. How do we downsample
a clique?

How do we handle
bottlenecks?
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Problem 4: GPUs are not optimized for graphs

Fixed + contiguous neighborhoods
⟹ Optimal compilation.
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Varying sizes + randommemory accesses
⟹ x100 slow-down.
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Problem 5: The range of target applications is too wide. [Dil15, Lu19, Gra19]

Molecules. Lidar scans. Social networks.
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A fast-growing community

In 2017, geometric deep learning was a solution in search of a problem.

With an appealing pitch, it attracted:

• Computer scientists, looking for new ways of combining features.

• Mathematicians, looking for new applications of their insights.

• Domain experts, looking for a breakthrough on their data.
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A blooming corpus of methods

The literature since 2017:

• Dozens of different convolution operators.

• Renewed interest in theoretical graph ML.

• Useful extensions for PyTorch: PyG, DGL, KeOps…

• Cross-pollination between different fields:
computer graphics, signal processing, chemistry…
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A field without consensus

Unfortunately, it is hard to recommend somemethods over the others:

• Applications arewildly different from each other.

• Most theoretical and experimental works are proof-of-concepts.

• Benchmarks are highly unreliable.
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We like to think that science is done in a vacuum

Archimedes – “Don’t disturb my circles”. Louis Pasteur, alone in the lab.
23



Scientific literatures are shaped by structural incentives

Frenchmathematicians – top 3 deepest ideas over a career:

• Promotes long-term, original thought.
• No incentives for outreach and interdisciplinary research.

INRIA researchers – 1 meaningful contribution every 5 years:

• A theorem, a piece of software, a patent, a societal breakthrough…
• Outstanding place for applied research.

Frenchmedical doctors/teachers/researchers – PubMed index:

• MERRI funds compensate hospitals for research activities.
• Fall behind the profitability threshold ⟹ shut down the lab, focus on care.
• Inflation of low-quality papers.
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Structural incentives in US/UK CS teams

Universities – climb up the Shanghai ranking:

• 1 (foreign) student = $30k-$70k per year.
• Maximize the number of papers to impress prospective students.

Professors – maximize the hype:

• Unstable “tenure track” contract, commited to a grant, startup to grow…
• Allowed to take risks, but not allowed to fail.

Students – target a job in the tech companies:

• Significant debt to pay back.
• Safest route: incremental research, claim SOTA every 6 months.
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Peer-reviewed ≠ Scientific truth

In the current ML community, relatively few actors are incentivized to:

• Review papers carefully.
• Document baselines thoroughly.
• Admit that an idea doesn’t work.
• Take themassive amount of time that is needed
to make their experiments truly reproducible.

• Keep the codebase up to date with a software stack that breaks every 6 months.

⟹ Unfortunately, the NeurIPS/ICML/… stampmeans little.
We cannot trust the conclusions of a paper
without reproducing the experiments

or checking the proofs carefully.
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Some common benchmarks are nothing but sanity checks [LCCB98, DJL+20]

Results on Graph-MNIST look promising…Until you remember that
test accuracy for basic K-NN classifiers on MNIST is 95%-99%.
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Some common benchmarks have been saturated for years [RLD22]

Challenging large-scale benchmarks are published every year…
But the review system pushes authors towards overfitting on “classic” datasets.
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Some benchmarks have been taken out of context [BRLB14]

The MPI FAUST dataset contains 300 real-life scans of 10 subjects – 30 poses each.
Problem: fit a reference mesh to the noisy 3D point clouds.
Challenges: different topologies, missing data, self contacts.

Dense ground truth correspondence for training = 10x10 meshes with identical topology. 29



Some benchmarks have been taken out of context [BRLB14]

The PyG library andmany papers on graph neural networks
discard the original point clouds to focus entirely on the 100 pre-alignedmeshes.

New problem: use (x, y, z) coordinates as input features for each node
⟹ predict node indices in [1, 6890] as output signal.

Train on 80 surfaces, test on the remaining 20.

Irrelevant to shape registration: we learn to overfit on the reference triangulation.
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How canwe judge?

Keep track of both classical and learning-based
baselines, in each application domain.

This is time-consuming – focus on 2-3 subjects at most.

It is likely that the wave of papers on geometric deep learning
will fade in most applications settings,
and stick in some productive niches:

Shape analysis? Chemistry? Social sciences?

This is how scientific progress takes place.
The hype cycle is a normal and well-documented phenomenon.
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Some personal experience



Two problems in structural biology [SFCB20]

Folding and design. Docking – interacting surfaces.
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Docking is a function of the protein surfaces [GSM+20]

Physical prior: no need to deal with the full volumes,
we are looking for surface fingerprints.
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Docking is a function of the protein surfaces [GSM+20]

We can compute geometric and chemical input features
on local patches with ≃ 1 nm radius.
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Docking is a function of the protein surfaces [GSM+20]

And perform all classification tasks on geodesic patches.
Built-in invariance to 3D rotations, translations and the inner content of the protein.

Enforces a locality prior: won’t overfit on scattered patterns.
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Docking is a function of the protein surfaces [GSM+20]

After training on the Protein Data Bank (with careful train-test split),
this enables three tasks of interest.
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A proof-of-concept that has been received well [GSM+20, SFCB20, SFS+22]

1. MaSIF

2. dMaSIF

atoms
a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

70ms 50ms 6ms 40ms

165ms

pre-processing on the fly

⟶ ×100 -×1,000 faster, lighter
and fully differentiable.
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Is deep learning truly a revolution? [ALFJ+17]

After 20 years of work, the developers of the Rosetta software have
de facto developed a hybrid “point neural network” that combines

physical potentials with data-driven residuals.
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Recap on the MaSIF-dMaSIF project

Personal feedback:

• Inspiring prototype that shows how far we can go if we
drop complex physical terms but preserve the symmetries of the problem.

• With clever geometry and code, we can do interesting science on a single GPU.

• Nowhere near close to a finished product: maintaining software is a full-time job.

• Well-funded andmature fields already showcase formidable baselines.
As outsiders, we can propose stimulating ideas and tools.
Always stay humble – understanding the full context takes years.
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Lung registration “Exhale – Inhale” [SFL+21]

Complex deformations, high resolution (50k–300k points), high accuracy (< 1mm).
Point clouds are more challenging than volumes, but robust to acquisition parameters. 40



Point neural networks [WWL+20, SFL+21]

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Target

L0

L1

L2

L3

L4

N points, 3 or 4 channels

 N points, 64 channels

C points, 64 channels

C/4 points, 
128 channels

C/8 points, 
256 channels

C/32 points, 
256 channels

Source

L0

L1

L2

L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

Multi-scale convolutional
point neural network.

Architecture of a
PointPWC block.

41



Point neural networks – strengths and limitations [SFL+21]

N points, 3 or 4 channels

 N points, 64 channels
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Source

L0
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L3

L4

PointPWC Block

PointPWC Block

PointPWC Block

Parameter θ

Multi-scale convolutional
point neural network.

Point neural nets, in practice:
• Compute descriptors at all scales.
• Match them using geometric layers.
• Train on synthetic deformations.

Strengths and weaknesses:
• Good at pairing branches.
• Hard to train to high accuracy.

⟹ Complementary to geometric methods
such as optimal transport.
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Three-steps registration [SFL+21]

xi
yj

θ

θ

1.    Affine-RobOT pre-alignment.

2.a. Deep prediction network.

2.b. Smooth deformation model.

3.    Spline-RobOT post-processing. Real source. Synthetic target.

Local deformation. Global deformation.
End-to-end
training on
synthetic 

pairs.

This pragmaticmethod:

• Is easy to train on synthetic data.
• Scales up to high-resolution: 100k points in 1s.
• Excellent results: KITTI (outdoors scans) and DirLab (lungs). 43



Three-steps registration
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Evaluation on the 3D Kitti dataset [MG15, MHG15, SFV+19]

3D scene flow estimation task, derived from a 2D + depth dataset.
This is a standard (but maybe questionable) benchmark.
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Evaluation on the 3D Kitti dataset [SFL+21]

Surprise: a baseline optimal transport solver with smoothing (RobOT)
outperformsmany deep learningmethods on all metrics. 46



Recap on the registration project [CCF+13]

Personal feedback:

• Pragmatic approach: get the best of both data-driven and deterministicmethods.

• Tables of numbers look impressive – but can hide critical information.

• Code base is not clean – top priority going forward.

• Evaluation on 3D scene flow is questionable.
Shouldn’t we work with the original 2D data?

• Evaluation onmedical data is hard:

• We release a new dataset of 1,000 pairs for training – without annotations.
• We only have access to 10 pairswith dense annotations for evaluation.
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Should we learn our graphs?



Dynamic graph CNNs [WSL+19]

At every layer, use the K-NN graph of the feature vectors.
This may promote semantic neighborhoods.
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Embeddings and autoencoders [Cho16]

Use the K-NN graph of a low-dimensional representation:
UMAP, an encoder-decoder architecture…
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Attention layers and transformers [CDL16, VSP+17]

The    FBI     is  chasing a  criminal on    the   run.The    FBI     is  chasing a  criminal on    the   run.

Wewould like to define convolutional architectures on sentences.
But the 1D structure of the text is not always relevant.
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Attention layers and transformers [CDL16, VSP+17]

The    FBI     is  chasing a  criminal on    the   run.

Instead, we embed feature vectors in a semantic space.
Attention = data-driven embedding + convolution.

Transformer = stack of attention layers.
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Attention layers and transformers [CDL16, VSP+17]

Cheap and expressive convolution on the
feature vectors xi:

• Query vectors qi ← MLPq(xi).
• Key vectors ki ← MLPk(xi).
• Value vectors vi ← MLPv(xi).
• Nadaraya–Watson interpolationwith
a kernel k(x, y) = exp(x ⋅ y):

xi ←
∑

j
exp(qi ⋅ kj) vj

∑
j
exp(qi ⋅ kj)

This architecture trains remarkably well
onweb-scale corpuses.
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Problem 1: In most important settings, data is expensive and fragmented [Ora17]

The Web and the Amazon Mechanical Turk
are the exceptions, not the rule:

• 1 protein structure in 3D
= months of work for a biologist.

• 50 fully documented patients
= a great thesis for a radiologist.

• 1 patient in a clinical trial
≃ $40k, up to $1M for surgery!

• Getting legal access to large datasets and
computers is extremely difficult in any field
that has a signficant societal impact.

53



Problem 2: Bigger models are slower, heavier and cumbersome [otRF98]

Wemust strike a balance between:
• Speed.
• Accuracy.
• Hardware and development costs.
• Energy consumption = battery life.
• Interpretability = easy to debug

= easy tomaintain.

Tons of equations ≃ Tons of parameters.
Only worth the trouble if there is no other option.
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Problem 3: In mature fields, structure is key to generalize

This is especially true in fields that are close to physics, robotics…
Fitting piecewise linear functions to parabolas or exponentials
is fine for interpolation, but very limiting for extrapolation. 55



A continuous spectrum of scientific fields

Lots of
maths

Lots of
data

Board games

Video games

Natural images

Natural language

Medical images

Biology images

History

Astrophysics

Chemistry

Economy

“The unreasonable effectiveness of mathematics in the natural sciences”
and “the bitter lesson of AI” apply to different ends of this spectrum.
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Monopolies claim that “bigger is better”

Electric bikes travel
at 30 km/h.

Private jets travel
at 800 km/h.

Rockets travel
at 30,000 km/h.

Raw performance metrics do not tell the whole story.
57



Choose your own path
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Tech companies target your “fear of missing out”

“We should stop training radiologists now.

It’s just completely obvious that within five
years, deep learning is going to do better

than radiologists.”

– Geoffrey Hinton, Google Brain and
UToronto, in 2016.
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Tech companies want you to forget that targeting ads ≠ solving cancer

“Welcome to DeepMind: Embarking on one of the greatest adventures
in scientific history”, available on YouTube since September 29, 2022.
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2020-2050: tough times ahead. Which problem are you going to solve?

Quantum computers

Targeted ads

Machine translation

Autonomous cars

Chess engine++

Killer drones

Automated MRI screening

Drug safety

Efficient batteries

Efficient rail network
Protein design

Nuclear fusion

The French education system is giving you genuine freedom of choice.
Use itwisely.
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Find your own balance

What you
love

What you
are good 

at

What the
world
needs

What you can
be paid for

VocationProfession

Passion Mission

Ikigai

Poverty

Emptiness

Vanity Doubt

62



References



References i

Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara,
Frank P DiMaio, Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K
Mulligan, Kalli Kappel, et al.

The Rosetta all-atom energy function for macromolecular modeling and
design.

Journal of chemical theory and computation, 13(6):3031–3048, 2017.

63



References ii

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Velicković.

Geometric deep learning: Grids, groups, graphs, geodesics, and gauges.

arXiv preprint arXiv:2104.13478, 2021.

Federica Bogo, Javier Romero, Matthew Loper, and Michael J. Black.

FAUST: Dataset and evaluation for 3Dmesh registration.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR),
Piscataway, NJ, USA, June 2014. IEEE.

64



References iii

Richard Castillo, Edward Castillo, David Fuentes, Moiz Ahmad, Abbie MWood,
Michelle S Ludwig, and Thomas Guerrero.

A reference dataset for deformable image registration spatial accuracy
evaluation using the COPDgene study archive.

Physics in Medicine & Biology, 58(9):2861, 2013.

Jianpeng Cheng, Li Dong, and Mirella Lapata.

Long short-termmemory-networks for machine reading.

arXiv preprint arXiv:1601.06733, 2016.

65



References iv

Nick Cammarata, Gabriel Goh, Shan Carter, Ludwig Schubert, Michael Petrov, and
Chris Olah.

Curve detectors.

Distill, 2020.

https://distill.pub/2020/circuits/curve-detectors.

François Chollet.

Building autoencoders in keras.

https://blog.keras.io/building-autoencoders-in-keras.html, 2016.

66

https://blog.keras.io/building-autoencoders-in-keras.html


References v

James Dillon.

Molecules.

https://github.com/chemplexity/molecules, 2015.

MIT License.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson.

Benchmarking graph neural networks.

arXiv preprint arXiv:2003.00982, 2020.

67

https://github.com/chemplexity/molecules


References vi

Olivier Ecabert, Jochen Peters, and MatthewWalker.

Segmentation of the heart and great vessels in ct images using amodel-based
adaptation framework.

Medical Image Analysis, (15):863–876, 2011.

Martin Grandjean.

Social network analysis visualization.

https://fr.wikipedia.org/wiki/Fichier:Social_Network_Analysis_Visualization.png,
2019.

CC BY-SA 3.0.

68

https://fr.wikipedia.org/wiki/Fichier:Social_Network_Analysis_Visualization.png


References vii

Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini,
MM Bronstein, and BE Correia.

Deciphering interaction fingerprints from proteinmolecular surfaces using
geometric deep learning.

Nature Methods, 17(2):184–192, 2020.

Yann LeCun, Corinna Corinna Cortes, and Christopher J.C. Burges.

Themnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998.

69

http://yann.lecun.com/exdb/mnist/


References viii

Daniel L. Lu.

Ouster os1-64 lidar point cloud of intersection of folsom and dore st, san
francisco.

https://en.wikipedia.org/wiki/File:Ouster_OS1-64_lidar_point_cloud_of_intersectio
n_of_Folsom_and_Dore_St,_San_Francisco.png, 2019.

CC BY 4.0.

Stéphane Mallat.

Understanding deep convolutional networks.

Phil. Trans. R. Soc. A, 374(2065):20150203, 2016.

70

https://en.wikipedia.org/wiki/File:Ouster_OS1-64_lidar_point_cloud_of_intersection_of_Folsom_and_Dore_St,_San_Francisco.png
https://en.wikipedia.org/wiki/File:Ouster_OS1-64_lidar_point_cloud_of_intersection_of_Folsom_and_Dore_St,_San_Francisco.png


References ix

Tomaso Mansi.

A statistical model for quantification and prediction of cardiac remodelling:
Application to tetralogy of fallot.

IEEE transactions onmedical imaging, 2011.

Moritz Menze and Andreas Geiger.

Object scene flow for autonomous vehicles.

In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 3061–3070, 2015.

71



References x

Moritz Menze, Christian Heipke, and Andreas Geiger.

Joint 3d estimation of vehicles and scene flow.

ISPRS annals of the photogrammetry, remote sensing and spatial information sciences,
2:427, 2015.

NoJhan.

Hairy head of a one year old girl.

https://commons.wikimedia.org/wiki/File:Baby_hairy_head_DSCN2483.jpg, 2007.

CC BY-SA 2.0.

72

https://commons.wikimedia.org/wiki/File:Baby_hairy_head_DSCN2483.jpg


References xi

Grégoire Orain.

Sur amazon turk, les forçats du clic.

https://www.lemonde.fr/pixels/article/2017/05/22/les-damnes-de-la-
toile_5131443_4408996.html, 2017.

Rubrique Pixels du Monde.

President of the Russian Federation.

Tobolsk-polimer chemical plant.

https://commons.wikimedia.org/wiki/File:Tobolsk-Polimer_chemical_plant.jpeg,
1998.

73

https://www.lemonde.fr/pixels/article/2017/05/22/les-damnes-de-la-toile_5131443_4408996.html
https://www.lemonde.fr/pixels/article/2017/05/22/les-damnes-de-la-toile_5131443_4408996.html
https://commons.wikimedia.org/wiki/File:Tobolsk-Polimer_chemical_plant.jpeg


References xii

CC BY-SA 4.0.

Maurice Peemen, Bart Mesman, and Henk Corporaal.

Speed sign detection and recognition by convolutional neural networks.

In Proceedings of the 8th International Automotive Congress, pages 162–170, 2011.

David Rozenberszki, Or Litany, and Angela Dai.

Language-grounded indoor 3d semantic segmentation in the wild.

In Proceedings of the European Conference on Computer Vision (ECCV), 2022.

74



References xiii

Freyr Sverrisson, Jean Feydy, Bruno E. Correia, and Michael M. Bronstein.

Fast end-to-end learning on protein surfaces.

bioRxiv, 2020.

Zhengyang Shen, Jean Feydy, Peirong Liu, Ariel H Curiale, Ruben San Jose Estepar,
Raul San Jose Estepar, and Marc Niethammer.

Accurate point cloud registration with robust optimal transport.

Advances in Neural Information Processing Systems, 34:5373–5389, 2021.

75



References xiv

Freyr Sverrisson, Jean Feydy, Joshua Southern, Michael M Bronstein, and Bruno
Correia.

Physics-informed deep neural network for rigid-body protein docking.

In ICLR2022 Machine Learning for Drug Discovery, 2022.

Thibault Séjourné, Jean Feydy, François-Xavier Vialard, Alain Trouvé, and Gabriel
Peyré.

Sinkhorn divergences for unbalanced optimal transport.

arXiv preprint arXiv:1910.12958, 2019.

76



References xv

Nicholas Sharp, Yousuf Soliman, and Keenan Crane.

Navigating intrinsic triangulations.

ACM Transactions on Graphics (TOG), 38(4):1–16, 2019.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong,
and Michael M Bronstein.

Understanding over-squashing and bottlenecks on graphs via curvature.

arXiv preprint arXiv:2111.14522, 2021.

77



References xvi

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin.

Attention is all you need.

Advances in neural information processing systems, 30, 2017.

John Williamson.

What do numbers look like?

https://johnhw.github.io/umap_primes/index.md.html.

78



References xvii

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M
Solomon.

Dynamic graph CNN for learning on point clouds.

Acm Transactions On Graphics (tog), 38(5):1–12, 2019.

Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li Fuxin.

PointPWC-net: Cost volume on point clouds for (self-) supervised scene flow
estimation.

In European conference on computer vision, pages 88–107. Springer, 2020.

79


	Geometric deep learning is not a mature field
	Some personal experience
	Should we learn our graphs?
	References

