
Geometric data analysis
Lecture 7/7 – GPU programming

Jean Feydy
HeKA team, Inria Paris, Inserm, Université Paris-Cité

Thursday, 9am–12pm – 7 lectures

Faculté demédecine, Hôpital Cochin, rooms 2001 + 2005

Validation: project + quizz

1



Towards a continuous analysis of large datasets [Pey11, EPW11]
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Simple graph. Manifold hypothesis. Physicalmanifold.
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Long history in physics [Dat18, Bri, NWRC22]

The Solar system. The ideal gasmodel. Fluid simulation.

Research in physics ⟺ High Performance Supercomputers
Only available through large institutional centers.
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Recent history around video games andmovies

FFVII on the PS1 – 1997. FFVII on the PS4 – 2020. Jensen Huang – 2022.

Research in graphics ⟺ Graphics Processing Units
Affordable to any researcher: game-changer.
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The “AI revolution” is primarily driven by hardware

Statistics and Machine Learning have been around for decades.
Breakthrough in 2010-15: hacking PlayStations for science became easy.

As AI researchers, wemust understand:

1. What is a GPU?

• Thousands of cores, complexmemorymanagement.
• 4 rules of GPU programming.

2. Current trends in the semiconductor industry

• Just-in-time compilation, custom AI chips.
• Supply chain issues and their impact on our careers.
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Accessible references

Coming from amath background:

• Chapter 2 of my PhD thesis, Geometric data analysis, beyond convolutions.
• Albert Chern’s lecture notes at UCSD, Introduction to computer graphics.

Two YouTube channels to learn about hardware:

• Branch Education – to understand the circuits.
• Asianometry – to get some context on the industry.

Great software documentation – the source of Nvidia’s monopoly in research:

• Mark Harris’ posts on the Nvidia dev blog, GPU Gems textbooks.
• CUDA toolkit documentation, CUTLASS, CUB.
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What is a GPU?



Nvidia focuses its marketing on economies of scale

Mythbusters Demo GPU versus CPU – 2009. 7



Nvidia focuses its marketing on economies of scale

Simple message: 10,000 cores ⟹ x1,000 acceleration vs. a 10-core CPU.
But how did we fill those tubeswith the correct paintballs?
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Scientific programs arememory bound [Fro12]

The curse of parallelism:
traffic jams.

Structure is required. Design choices
favor “bankable” program architectures.
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Let’s open up a GPU
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Let’s open up a GPU

7,000 cores on a single GPU. The Turing architecture.

11



GPUs and large administrations follow the same plan

GPU ≃ 100 redundant blocks. Inside a CUDA block: workers and buffers.
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Redundancy is key to recover high yields in spite of defects [Dor97, Pee11]

Silicon crystal. Chips are etched onto silicon wafers.

GeForce RTX 3090 > GeForce RTX 3080 > GeForce RTX 3070 > …
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GPUs are optimized to render 3Dmeshes in real time [Hen08, Shi20]

Light Source

Scene Object

Shadow RayView Ray

Image
Camera

Simulating light rays. Ray tracing in one weekend.

Nvidia GeForce RTX (Ray Tracing Texel eXtreme)
⟺ Geometric computations + textures, on independent patches of the screen.
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5main layers of memory storage

1 GPU ≃ 100 blocks of 100 cores.

On the CPU host:
• HDD / SSD – 1 TB.
• Host RAM – 100 GB.

On the GPU device:
• Device RAM – 10 GB.
• Shared block-wisememories – 1 Kb/core.
• Thread-wise registers – 1 Kb/core.

Time(Device RAM ↔ Core) ≃ 100 arithmetic operations.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.
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4 rules of GPU programming

1. Promote block-wise parallelism.

2. ReduceHost ↔ Devicememory transfers.

3. Reduce Device ↔ Shared/Threadmemory transfers.

4. Promote block-wise, contiguousmemory accesses.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.
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The CUDA toolkit – a C++ dialect for GPU programming

__global__ void
My_CUDA_kernel(int param, float *device_data, float *device_output) {

// We use the indices of the current thread and CUDA block
// to assign each worker to its place in the computation plan:
int i = blockIdx.x * blockDim.x + threadIdx.x;

// We declare local variables as in standard C++.
// They'll be stored in the Thread memory whenever possible:
float some_value = 0;
// We access the Shared memory through a raw C++ pointer:
extern __shared__ float shared_mem[];

// We handle transfers with a transparent interface:
some_value = device_data[i]; // Thread memory <- Device RAM
shared_mem[i] = device_data[i]; // Shared memory <- Device RAM
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The CUDA toolkit – a C++ dialect for GPU programming

// Computations are written in standard C++ and executed in parallel
// by all the threads of the CUDA block:
for(int k = 0; k < param; k++) {

some_value = some_value + k * shared_mem[i];
...

}

// We may create checkpoints for all threads in a CUDA block.
// This may impact performances.
__syncthreads();

// We write results back to the Device RAM with:
device_output[i] = some_value; // Device RAM <- Thread memory

} 18



The CUDA toolkit – a C++ dialect for GPU programming

// The main C++ program, executed by the CPU:
int main(void) {

int N = 1024; float *host_data, *host_out, *device_data, *device_out;

// Allocate memory on the device - the API is a bit heavy:
cudaMalloc((void**) &device_data, N * sizeof(float));

// Device RAM <- Host RAM:
cudaMemcpy(device_data, host_data, N * sizeof(float),

cudaMemcpyHostToDevice);

// Set the parameters of the CUDA block:
int block_size = 128; int grid_size = N / block_size;
int shared_mem_size = 2 * block_size * sizeof(float);
// Run the GPU kernel:
My_CUDA_kernel<<<grid_size, block_size, shared_mem_size>>>(...);
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The CUDA toolkit – a C++ dialect for GPU programming

// Wait for the GPU to finish its computations:
cudaDeviceSynchronize();

// Host RAM <- Device RAM:
cudaMemcpy(host_out, device_out, N * sizeof(float),

cudaMemcpyDeviceToHost);

// Process and save the result "output array":
...

// Don't forget to free the allocated memory:
cudaFree(device_data);

// And exit gracefully:
return 0;
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Recap on GPUs

1,000 € = 1 GPU = 100 × 100 cores with 5 main layers of memory:

• Large arrays are slow: Memory read/write ≫ Arithmetics.
• Fast buffers are small: 1 KB ≃ 100 float numbers per core.

To optimize the Shared and Threadmemories: C++ or Assembly.

Most scientists rely on pre-existing libraries of CUDA kernels
and never dig deeper than the GPU Device RAM.
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A practical example: nearest neighbor search

import torch
x = torch.rand(M, D) # (M, D)
y = torch.rand(N, D) # (N, D)

diff = x.view(M,1,D) - y.view(1,N,D) # (M, N, D)
diff2 = diff ** 2 # (M, N, D)
sqdists = diff2.sum(dim=2) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) CPU operations andmemory transfers.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.
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A practical example: nearest neighbor search

import torch
x_ = torch.rand(M, D) # (M, D)
y_ = torch.rand(N, D) # (N, D)
x = x_.cuda() # (M, D)
x = y_.cuda() # (N, D)

diff = x.view(M,1,D) - y.view(1,N,D) # (M, N, D)
diff2 = diff ** 2 # (M, N, D)
sqdists = diff2.sum(dim=2) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) Device↔Threadmemory transfers.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.
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A practical example: nearest neighbor search

import torch
x = torch.rand(M, D).cuda() # (M, D)
y = torch.rand(N, D).cuda() # (N, D)

# Use that |x-y|^2 = |x|^2 - 2 (x.y) + |y|^2:
dots = x @ y.T # (M, N)
sq_y = (y ** 2).sum(dim=1) # (N,)

sqdists = - 2 * dots + sq_y.view(1,N) # (M, N)
indices = sqdists.argmin(dim=1) # (M,)

Bottleneck:
(M × N × D) GPU computations if D > 100,

(M × N) Device↔Threadmemory transfers otherwise.

HDD / SSD

Host RAM

CPU cores

Device RAM

GPU cores

Shared mem.

Thread mem.
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A practical example: nearest neighbor search

On-the-fly, tiled reduction: optimal memorymanagement.
Bottleneck: (M × N × D) GPU computations. 25



Recap on nearest neighbor search

∀ 𝑖 ∈ [1, M] , index[ 𝑖 ] ← arg
N

min
𝑗=1

D
∑
𝑘=1

(𝑥[ 𝑖, 𝑘 ] − 𝑦[ 𝑗, 𝑘 ])2

• Each improvement provides a ×10 to ×100 speed-up.

• Going even further, for structured data:

• Clusterize the two point clouds.
• Sort them to ensure that the clusters are contiguous in memory.
• Skipwhole blocks of the tiled distance matrix.

• Standard benchmarks (ann-benchmarks.com) and libraries: FAISS…
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Compilation



Compilation is a major bottleneck in computer science

∀ 𝑖 ∈ [ 1, M ] , index[ 𝑖 ] ← arg
N

min
𝑗=1

D
∑
𝑘=1

(𝑥[ 𝑖, 𝑘 ] − 𝑦[ 𝑗, 𝑘 ])2

• We have seen 4-5 different strategies, increasingly fast but complex.
• Optimal schemes for M < 1,000 look completely different.

Naive GPU implementations are often x100–x1,000 too slow.

Reaching optimal run times is hard.
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Compilation is a deep scientific problem

The 4 color theorem. 4-coloring a planar graph.
28



Register allocation via k-coloring of the interference graph

def f(a)�
    b = a �� 2
    c = 5 * b
    d = c + 6
    return d

function(R1)�
    R2 = R1 �� 2
    R1 = 5 * R2
    R2 = R1 + 6
    return R2

line 1

line 2

line 3

a b

c d

a b

c d

Register 1 Register 2
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LLVM: a welcome consolidation [Lat11]

C frontend

Fortran frontend

Ada frontend

Common
optimizer

x86 backend

PowerPC backend

ARM backend

30



Just-in-time compilation

Dream: turn high-level Python code into an optimal GPU binary.

Reality: very hard combinatorial problem, task-specific heuristics.

Existing libraries focus on different targets:

• Shaders for 3Dmeshes.
• Convolutions on 2D and 3D grids – with varying filter sizes, channels…
• Fusion ofmatrix multiplications and non-linearities for MLPs, Transformers.

⟹ A critical mass is required to attract investments.

What about geometric ML?
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Computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers
penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses
penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported
by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA
(FAISS, KPConv…): several months of work.

M[ i , j ]

Dense array

(in, jn, Mn)

Sparsematrix 32



The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F( xi , yj )

Symbolic matric
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.
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A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array

Turn dense arrays into symbolicmatrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
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The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,
on parwith the bruteforce CUDA scheme of the FAISS library…

And can be used with anymetric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variableswith:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
• Operations: +, ×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.
• Automatic differentiation: seamless integration with PyTorch. 35



KeOps lets users work withmillions of points at a time

Benchmark of a Gaussian convolution
between clouds of N 3D points on a RTX 2080 Ti GPU.

100 1k 10k 100k 1M

1ms

10ms

100ms

1 s

10 s

out of memory!

Number of points N

Ti
m
e

NumPy (CPU)

PyTorch (GPU)

KeOps (GPU)
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KeOps is a good fit for machine learning research

K-Means. Gaussian Mixture Model.

Use any kernel, metric or formula you like!
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KeOps is a good fit for machine learning research

Spectral analysis. UMAP in hyperbolic space.

Use any kernel, metric or formula you like!
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Applications to Kriging, spline, Gaussian process, kernel regression

A standard tool for regression [Lec18]:

Under the hood, solve a kernel linear system:

(𝜆 Id + 𝐾𝑥𝑥) 𝑎 = 𝑏 i.e. 𝑎 ← (𝜆 Id + 𝐾𝑥𝑥)−1𝑏

where 𝜆 ⩾ 0 et (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) is a positive definite matrix.
39



Applications to Kriging, spline, Gaussian process, kernel regression

KeOps symbolic tensors (𝐾𝑥𝑥)𝑖,𝑗 = 𝑘(𝑥𝑖, 𝑥𝑗) :

• Can be fed to standard solvers: SciPy, GPyTorch, etc.

• GPytorch on the 3DRoad dataset (N = 278k, D = 3):
7h with 8 GPUs → 15mnwith 1 GPU.

• Provide a fast backend for research codes:
see e.g. Kernel methods through the roof: handling billions of points efficiently,
by G. Meanti, L. Carratino, L. Rosasco, A. Rudi (2020).
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KeOps lets researchers focus on their models, results and theorems

Some applications to dynamical systems [DM08, DFMAT17]
and statistics [CDF19] with A. Diez, G. Clarté et P. Degond:

3D Vicsek model with orientation,
interactive demo with 2k flyers.

2D Vicsek model on the torus,
in real-time with 100k swimmers.
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KeOps lets researchers focus on their models, results and theorems

⟹ Scale up tomillions/billions of agents with Python scripts.

Packing problem in 2D
with 10k repulsive balls.

Collective Monte Carlo sampling
on the hyperbolic Poincaré disk.
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Scaling up geometric deep learning [GSM+20, SFCB20, SFS+22]

1. MaSIF

2. dMaSIF

atoms
a. surface mesh b. features c. patches d. output

a. points, normals b. features c. coordinates d. output

6 s 20 s 50 s

70ms 50ms 6ms 40ms

165ms

pre-processing on the fly

⟶ ×100 -×1,000 faster, lighter
and fully differentiable.
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Scaling up geometric deep learning and optimal transport [SFL+21]
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Recap on compilation

• Turning scientific code into optimal binaries is an open problem:
⟶ Massive room for improvement on the software side.
⟶ Valuable and impactful skill.

• Symbolic matrices are to geometricML what
sparsematrices are to graph processing:

⟶ KeOps: x30 speed-up vs. PyTorch, TF et JAX.
⟶ Useful in a wide range of settings.

• These tools open new paths for geometers and statisticians:
⟶ GPUs are more versatile than you think.
⟶ Ongoing work to provide fast GPU backends to researchers,

going beyond what Google and Facebook are ready to pay for.
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Optimized AI cores



Nvidia Ampere architecture in-depth [KGJ+20]

NVIDIA A100 GPU – the flagship AI chip as of 2020-22.
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Nvidia Ampere architecture in-depth [KGJ+20]

GA100 architecture with all 128 blocks. A100 GPU = 108 functional blocks.
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Nvidia Ampere architecture in-depth [KGJ+20]

“Physical” CUDA block or Streaming Multiprocessor:

• 192 KB of Sharedmemory.

• 4 squads of “physical threads” or warps with:

• 64 KB of Threadmemory.
• 16 int-32 cores.
• 16 float-32 cores.
• 8 float-64 cores.
• 1 Tensor core.
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Integer cores: handle memory addresses – Float-32 cores: great for 3D geometry

31 significand bits

+

+
=

1 sign bit 23 significand

+

+
=

1 sign 8 exponent

2       — 2       ≃  10     — 10 
-126 +127 -38 +38

1 + 2       ≃ 1 . 000 000 1-23
1-2     —  +2       ≃ ± 2,147,483,647

 +31 -31
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Float-64 cores: great for physics simulation

52 significand

+

+
=

1 sign 11 exponent

2       — 2       ≃  10     — 10 
-1022 +1023 -308 +308

1 + 2       ≃ 1 . 000 000 000 000 000 2-52
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Tensor cores: great for CNNs and transformers

7 significand1 sign 8 exponent

256 bits  ≃ 4x4 bfloat-16 2       — 2       ≃  10     — 10 
-126 +127 -38 +38

1 + 2       ≃ 1 . 007-7

+ + =
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Trading speed vs. power consumption vs. versatiliy vs. manufacturing costs

“How do Smartphone CPUsWork?”
by Branch Education.

Tensor Processing Units,
by Google.
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The CPU vs. GPU uncoupling occured in the early 2000’s

Flops

1990 2000 2010 2020

1G

100 M

10 G

100 G

1 T

10 T

100 T

GPUs

CPUs
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Computing power available to ML researchers

Flops

1990 2000 2010 2020

1G

100 M

10 G

100 G

1 T

10 T

100 T

Focus on math

Theano, Caffe
TF, PyTorch... 

AWS, GCE
Jean Zay...

Covid

Miracle

Sustained growth

Local supply

War in Taiwan
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Conclusion



A geometric tour of data science

1

2

3

4

5

6

1
2
3
4
5
6

+

+
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What is AI research about?

Insider's view:
professional.

Outsider's view:
enthusiast.

Tunnel vision on a single angle ⟹ high risk career.
Biggest success of the 1848 gold rush: Levi’s blue jeans.
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ML research is 100% interdisciplinary – amindmap of my own PhD experience
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Research is a deeply social and diverse activity
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Some early career advice

1. You bring more to the table than your potential advisor:

• Full-time focus on a subject = only during your PhD.
• Your leverage: show that you are skilled and reliable.

2. Tutoring time + open research area ≫ Prestige:

• Avoid crowded teams and topics.
• Outstanding environments outside of Paris/London/Boston/SF…
• Connect in conferences andworkshops.
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Some early career advice

3. Different countries, different people, different perspectives.
Who is the “main character” of a PhD thesis?

• I believe that it should be the student.
• Some people think that it is the advisor.

4. Personal chemistry + general research area ≫ Precise topic:

• A PhD that goes according to plan is a bit disappointing anyway ;-)
• Meet teammembers (including students!) before signing a long-term contract.
• Internship ≃ trial period, goes both ways.
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Befriend domain experts – Find your own balance

What you
love

What you
are good 

at

What the
world
needs

What you can
be paid for

VocationProfession

Passion Mission

Ikigai

Poverty

Emptiness

Vanity Doubt
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