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Who am I? A short CV

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

Close ties with healthcare:
2015 Image denoising with Siemens Healthcare in Princeton.

2019+ MasterClass AI–Imaging, for radiology interns in the University of Paris.

2020+ Colloquium onMedical imaging in the AI era at the Paris Brain Institute.
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Mymotivation: medical data analysis

Three main characteristics:

• Heterogeneous data: patient history, images, etc.
• Small stratified samples: 10 – 1 000 patients per group.
• Dealing with outliers and the heavy tails of our distributions is a priority.
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Twomain applications – on large real-life datasets

Computational anatomy. 3Dmedical scans:

• 100k triangles to represent a brain surface.
• 512x512x512 ≃ 130M voxels for a typical 3D image.

Public health. Over the last decade, medical datasets have blown up in size:

• Clinical trials: 1k patients, controlled environment.
• UK Biobank: 500k people, curated data.
• French Health Data Hub: 70M people, full social security data since ~2000.

Medical doctors, pharmacists and governments need scalable methods.
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Some research interests

Optimal transport
for shape registration.

Geometric deep learning
for protein docking.

Survival analysis
for pharmaco-vigilance.
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Three points of view onmachine learning and AI

At the intersection of three communities :

• AI experts in Paris, London...

• Students at the ENS, the MVA, Epita.

• Medical doctors among colleagues, friends and family.

AI in healthcare : massive gap between what we know,
what we hope,
what we fear.

What do you think?
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“Artificial intelligence” is a misleading term

AI seduces, questions, protects or threatens… But doesn’t explain much !

Among experts, researchers always talk aboutmodels,
discuss their underlying hypotheses and study their properties.

The aim of this class is to give you a structured perspective on the field. 7



Objectives of the class

1. Present a quick overview of models that you are likely to encounter.

2. Highlight their underlying hypotheses, strengths andweaknesses.

3. Provide you with clear guidelines on the use of different tools and theories.

4. Discuss the realities of applied machine learning.

8



Today

1. AI = model + data:

• The curse of dimensionality – or why ML is not “just statistics”.
• Example: three levels of analysis in anatomy.

2. How can I choose a goodmodel?

• The map is not the territory.
• Example 1: the sphere of triangles.
• Example 2: style transfer with convolutional neural networks.

3. Overview of the class:

• What’s coming next?
• Setup on the computers. 9



1. AI = model + data



What is a dataset?

?
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Supervised learning = Regression.
We look for a formula F(x1, … , xD) of the D variables
that best approximates an important quantity (♡).
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A simplemodel: linear regression

≈

≈

≈

≈

✕ ✕ ✕ ✕ ✕ ✕

+a b c d e f

We choose the weights a, b, …, f
byminimizing a least squares error.
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The standard setting of low-dimensional statistics [Las]
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First applications to astronomy,
with hundreds of observations

on a handful of variables. 12



Problem: medicine isn’t XIXth century astronomy

≈

≈

≈

≈

✕ ✕ ✕ ✕ ✕ ✕

+a b c d e f

With lots of information about few patients,
we quickly “discover” spurious correlations.

This is known as overfitting.
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Significant (XKCD 882)
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Significant (XKCD 882)
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The curse of dimensionality

Having access tomore patients is usually a good thing.
But gettingmore information about each patient is very dangerous.

In the previous example: knowing the color of the candy
led the (imprudent) scientists to over-interpret a random fluctuation.

Machine learning is about doing reliable statistics
in this dangerous setting.
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Wemust regularize our decision rules – using sparsity

≈

≈

≈

≈

✕ ✕ ✕ ✕ ✕ ✕

+a b c d e f

A sparsemodel will select 5 or 10 important columns.
This is useful to handle tabular data (XGBoost…)
or identify sources in signal processing (Lasso…).
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Wemust regularize our decision rules – using a domain-specific structure

≈

≈

≈

≈

✕ ✕ ✕ ✕ ✕ ✕

+a b c d e f

A structuredmodel will leverage the geometry of the data.
Think about the main food groups or the

ATC classification formedical drugs.
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A first example: medical imaging



Amedical image is a massive lump of data

Each pixel is a column in our dataset!
We observemillions to billions of variables

on cohorts of a few thousand patients.
21



Sampling the full space of medical images is impossible

1 number
→ 5 samples

2 numbers
→ 52 samples

128 ⋅ 128 numbers
→ 5128⋅128 samples

The set of all 2D/3D images isway too large
to be sampled with a satisfying accuracy.
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First remark: we cannot rely on sparsity

A good radiology exam does not rely exclusively on 5 or 10 pixels.
Wemust learn how to group pixels in relevant bundles.
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What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels

2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy

3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy

3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

24



What do you see on a chest image? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

Simplifying a bit, each level of analysis corresponds to
a way of grouping pixelswith their neighbors.
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1st level: a pixel grid

Nx × Ny × Nz array of pixels.

Bitmap images and volumes:
• .bmp, .png, .jpg
• Standard in radiology.

+ Orderedmemory structure.
+ Explicit neighborhoods.
+ Fast convolutions.

→ Texture analysis.
→ Organ segmentation.
→ Pattern detection.
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2nd level: point clouds and 3D surfaces [EPW11]

Npoints × 3 array of (x, y, z) coordinates.

Clouds of points (± triangles):
• .svg
• Standard for video games.

+ Compact representation.
+ High precision geometry.
+ Easy to deform.

→ 3D visualization.
→ Anatomical atlas.
→ Shape analysis.
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3rd level: biomechanical and/or physiological model [Man11]

Volumetric mesh,
graph of interactions.

Mechanical/biological model:
• Finite elements, networks.
• Standard for CAD.

+ Prior knowledge.
+ Robust to noise.
+ Realistic behaviour.

→ Physiological interpretation.
→ Inferwhat cannot be seen (blood flow).
→ Simulate a surgery.
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To summarize

Wemust combine a statistical regressionmethod with a relevant model.

In medical imaging, wemay work with:

1. A 2D or 3D pixel grid.
2. An array of (x, y, z) coordinates.
3. Aweb of complex interactions.
4. Everything at once!

In most cases, we will define a large structured formula:

image
F

−−→ F (image) ≃ diagnostic

F is a parametric computing architecture
≃ model to fit ≃ network to train.
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2. How can I choose a goodmodel?



Amodel is like amap: a warped and partial view of the world [Duk, Str]

Anaximander Mercator Winkel

Météo FranceGoogle RATP

How can I trust
these pictures?
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Themap is not the territory

Amap is not the territory it represents, but, if correct,
it has a similar structure to the territory,

which accounts for its usefulness.

– Alfred Korzybski, 1933.
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On exactitude in science – Jorge Luis Borges, 1946, translated by Andrew Hurley.

…In that empire, the art of cartography attained such perfection that the map of a single
province occupied the entirety of a city, and the map of the empire, the entirety of a
province. In time, those unconscionable maps no longer satisfied, and the cartograph-
ers guilds struck a map of the empire whose size was that of the empire, and which
coincided point for point with it.

The following generations, who were not so fond of the study of cartography as their fore-
bears had been, saw that that vast mapwas useless, and not without some pitilessness
was it, that they delivered it up to the inclemencies of sun and winters. In the deserts
of the West, still today, there are tattered ruins of that map, inhabited by animals and
beggars; in all the land there is no other relic of the disciplines of geography.

– Suarez Miranda, Viajes de varones prudentes, Libro IV,Cap. XLV, Lerida, 1658
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What is a goodmodel?

A goodmap should:

• Highlight the relevant key points and roads.
This is a task-specific objective (car, bike…).

• Hide unnecessary information to reduce clutter: the lighter, the better.
Heavy mapswill be discarded by the next generation.

• Be accurate – up to a required tolerance.
There is a tradeoff here: think of the metro map!

• Be transparent about omissions and distortions.
This is the main trap that we should not forget.
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What is a goodmodel?

All these points apply to MLmodels:

• Highlight the stuff that matters.
• Discard the rest.
• Be accurate – up to a sensible tolerance.
• Be transparent and honest.

Of course, raw “performance” results domatter: accuracy is a real thing.

But most importantly, a goodmodel should be legible and enable creativity.
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Example 1: The sphere of triangles



Surprisingly enough, our story starts with…Menhirs!
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More precisely: with the distribution of megaliths in the Land’s End peninsula

52 Menhir locations. Cornwall, in South-West England.

Can you see alignments here? Some people do.
Many authors have claimed that these ley lines demarcate
“Earth energies” and/or serve as guides for alien spacecraft. 35



Understanding triangle shapes

Back in 1974, this problemmotivated David Kendall to ask a question:

Assuming that I draw 52 points at random in a square…
Howmany flat triangles (say, with a 180° ± 1° angle) am I going to observe?

This prompted a remarkable series of papers:

• The diffusion of shape, Kendall, 1977.
• Alignments in two-dimensional random sets of points, Kendall and Kendall, 1980.
• Simulating the ley hunter, Broadbent, 1980.
• Shapemanifolds, Procrusteanmetrics, and complex projective spaces, Kendall, 1984.

And the the birth of modern shape analysis.
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Step 1: Working with shapes up to similarities [Kli15]

37



Step 2: The space of triangles up to similarities is two-dimensional

A B

C

z

Send A to (-1, 0)
and B to (+1, 0).

Identify z ∈ ℂ ∪ {∞}
with all non-degenerate triangle shapes. 38



Step 3: Up to a clever change of coordinates: this is actually a sphere!
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The two poles correspond to the direct and indirect equilateral triangles

40



The Equator corresponds to the set of flat triangles
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First properties of this map

This representation respects the main symmetries of the set of triangles:

• The sets of isoceles triangleswith respect to A, B and C correspond to
three great circles that are equally spaced with each other.

• Axial symmetries correspond to a North-South inversion across the Equator.

• The Equator of flat triangles + the meridians of isoceles triangles
cut the sphere in 12 pieces. These exactly correspond to
the 6 permutations of the vertices ABC × { the identity or an axial symmetry }.

But there is more!
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Metric properties of the spherical embedding

K ∶ (A,B,C) ∈ ℝ3×2\{A = B = C} ↦ K(A,B,C) ∈ ℝ3

denotes the Kendall embedding from the set of non-degenerate
triangles to the sphere of center (0, 0, 0) and diameter 1.

(It has an OK-ish expression using cos and sin.)

Then, straightforward computations show that:

min
similarity S

‖S(A)−D‖2
ℝ2+‖S(B)−E‖2

ℝ2+‖S(C)−F‖2
ℝ2 = Var(D, E, F) ⋅ ‖K(A,B,C)−K(D, E, F)‖2

ℝ3

The chord distance on the sphere of Kendall corresponds to
the Euclidean distance on triplets of points in the plane, up to similarities.
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Statistical properties of the spherical embedding

A, B, C are drawn according to an isotropic
Gaussian distribution on the plane.

Empirical histogram on the
sphere of triangle shapes.
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Statistical properties of the spherical embedding

A, B, C are drawn according to a non-isotropic
Gaussian distribution on the plane.

Empirical histogram on the
sphere of triangle shapes.
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Statistical properties of the spherical embedding

A, B, C are drawn according to a non-isotropic
Gaussian distribution on the plane.

Empirical histogram on the
sphere of triangle shapes.
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Summary

Kendall showed that the space of triangles is best understood as a sphere
for topological, geometric and statistical reasons.

You cannot “unsee” this elegant result.

Most importantly, his theorem showed that shapes
naturally belong to a curved geometric space.
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This idea is at the heart of modern shape analysis software [KMP07]

Geodesics in spaces of elephants and skeletons.
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This idea is at the heart of modern shape analysis software [vRESH16]

Barycentric interpolation in a space of hands.
49



Example 2: Style transfer with
convolutional neural networks



Remember that picture? [EPW11]

1. Pixels 2. Anatomy 3. Function

Let’s talk about the first way of grouping pixelswith their neighbors.
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Filtering, also known as the “convolution product”

Convolution (i.e. weighted average of the neighboring pixels) :
Cheap generalization of the product “a ⋅ x”,
parameterized by the coefficients of a small filter 𝜑.

⋆ =

𝜑 x 𝜑 ⋆ 𝑥
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Amulti-scale prior on images

Wavelet theory (1990∼2010 ; Meyer, Mallat, Daubechies...) :
Small filters + cascading zoom-out operations [Mal16]:

Image ⟶ Relevant coefficients
≃ “.wav” Audio ⟶ Music score

⟹ JPEG2000 format, standard of the movie industry.
52



Convolutional neural networks [PMC11]
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Convolutional Neural Networks as a data-driven “codec” for your data

JPEG2000 relies on amodel for natural images that is:

• Computationally cheap.
• Translation-equivariant.
• Encodes amulti-scale prior on natural images.

By tuning its parameters on a labeled database,
we get a CNN = domain-specific “JPEG2020”.

x
CNN

𝜇(x) m(x) M(x)
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An iconic application: Deep Art [NN16]
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The dream application: image classification [WZTF17]

Looking at CNN( x ) = [ 𝜇(x) , m(x) , M(x) ],
can we distinguish seagulls from pandas?

What researchers have in mind:
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The limits of multiscale filtering [NYC15]

Standard CNNs perform pattern detection – little more, little less:

« 𝜇(x) is reliable ; M(x) really isn’t. »
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Overview of the class



A geometric perspective on data sciences

Blood samples

Drug consumption history

Cognitive scores

MRI/CT images

Domain-specific observations
on a population of N subjects

Regression (kernels...)

Visualization (UMAP...)

Classification (hierarchy...)

Clustering (K-Means...)

General machine
learning methods

N-by-N matrix
of similarities

This class is about understanding similarity metrics.
What are the implicit priors that they reflect?
How can wemanipulate them efficiently?
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Overview of the class [Wil]

Deep learning: convolutions,
geometry and attention.

Graphs, curvature
and embeddings.

Vectors, linear models
trees and kernels.

Manifolds, geodesics
and barycenters.

Probability distributions
and adversarial norms.

Algorithmic bottlenecks
and solutions. 59
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