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Recap of the previous lectures

Tomitigate the curse of dimensionality, we use:

• Expert knowledge: high-quality features.

• Relevant families of functions: kernels, convolutional networks.

• Relevant neighborhood structures: graphs.

Main challenge: local implementation ⟹ global understanding.

Produce guidelines and insights for practitioners.
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A continuous vocabulary for data sciences [Fey20]

Lecture 5 – From discrete graphs to continuous spaces:

• The Poincaré disk.
• Local metrics and geodesics.

Lecture 6 – From discrete samples to continuous distributions:

• Why dowe care about probability distributions?
• Information geometry, kernels and optimal transport.
• Lab session on gradient descent.

⟹ Chapter 3 of my PhD thesis, Geometric data analaysis, beyond convolutions.
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What is a probability distribution?



Probability distribution 𝛼 = weights 𝑎𝑖 at locations 𝑥𝑖

Histogram:
variableweights 𝑎𝑖,
fixed locations 𝑥𝑖.

Sample:
fixedweights 1/N,

variable locations 𝑥𝑖.

Weighted point cloud:
variableweights 𝑎𝑖,
variable locations 𝑥𝑖.

Discrete sum 𝛼 = ∑N
𝑖=1 𝑎𝑖𝛿𝑥𝑖

⟹ Continuous density 𝛼 = ∫
𝑥

𝑎(𝑥) d𝑥 .
Today, we assume that 𝑎 ⩾ 0 and sums up to 1.
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Today’s focus: quantifying distances between probability distributions

Wemust handle both discrete and
continuous distributions.

Wemust choose if 𝛼 is closer
to 𝛽 (samemean value)
or to 𝛾 (same support).
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Application 1: One-sample and Two-sample testing

One-sample test:
discrete observation 𝛼,
continuousmodel 𝛽.

Two-sample test:
two discrete observations 𝛼 and 𝛽.

Null hypothesis: 𝛼 and 𝛽 come from the same distribution.
Test: reject if d(𝛼, 𝛽) is too large.
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Example: Splitting a population evenly for a clinical trial

Problem 1: ensure that the treatment
and control groups have similar

characteristics.

Problem 2: given a large population,
pick a group of control patients that
have similar characteristics to our

treated patients. 7



Application 2: Classification = regression in a space of distributions

Linear regression:
• Encode class labels as integer numbers

𝑙(𝑥) ∈ {1, 2, 3} .

• Predict a score 𝑠(𝑥) at every location 𝑥.

• Minimize the least square error:

1
N

N

∑
𝑖=1

∣𝑙(𝑥) − 𝑠(𝑥)∣2 .

Massive bias depending on
the ordering of the labels.

1
2 3

2 input features, 3 classes.

8



Application 2: Classification = regression in a space of distributions

Logistic regression:
• Encode class labels as probability
distributions 𝛿(𝑥) ∈ ℙ({1, 2, 3}) .

• Predict a vector of scores 𝑠𝑖(𝑥) at every
location 𝑥 and turn it into a probability
distribution using the SoftMax:
𝛼(𝑥) = (𝑒𝑠1(𝑥), 𝑒𝑠2(𝑥), 𝑒𝑠3(𝑥)) / ∑ 𝑒𝑠𝑖(𝑥)

• Minimize the relative entropy:

1
N

N

∑
𝑖=1

KL(𝛿(𝑥), 𝛼(𝑥)) .

Invariant to the ordering of the labels.

(1,0,0)

(0,1,0)

(0,0,1)

2 input features, 3 classes.
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Application 3: Generativemodelling

Generative Adversarial Networks and
Variational Auto-Encodersminimize a

distance between a synthetic sample and
a reference data sample.

Diffusion and score-basedmodels
estimate a gradient of the distance to the

support of a reference data sample.

10



Application 4: Shape registration [KCC17]

Curve:
one weight per segment.

Surface:
one weight per triangle.

Segmentationmask:
one weight per voxel.

Encoding shapes as distributions guarantees an invariance to resamplings.
Wemay work with basic (𝑥, 𝑦, 𝑧) coordinates or with better features.
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Application 4: Shape registration [SFL+21]

Registration algorithmsminimize a distance
between a deformable model 𝛼 and the fixed target 𝛽. 12



Application 5: Meta-analyses on histograms and distributions

3D shape texture
≃ Distribution of curvatures

𝜅1 ⩾ 𝜅2 on the surface.

UMAP representation of a population of textures,
from thematrix of Wasserstein distances between

curvature histograms.

Distances enable the processing of populations of histograms.
This is relevant to make group-level analyses.
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A point about implementations

Histogram:
explicitweights 𝑎𝑖,
implicit locations 𝑥𝑖.

Sample:
implicitweights 1/N,
explicit locations 𝑥𝑖.

Weighted point cloud:
explicitweights 𝑎𝑖,
explicit locations 𝑥𝑖.

Depending on the application, we may choose
a different encoding for our distributions.
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A point about implementations

Histogram:
explicitweights 𝑎𝑖,
implicit locations 𝑥𝑖.

Sample:
implicitweights 1/N,
explicit locations 𝑥𝑖.

Weighted point cloud:
explicitweights 𝑎𝑖,
explicit locations 𝑥𝑖.

Understanding that different implementations correspond to
the same operation is key to insightful research in the field.
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A point about implementations

Convolution
of the density map 𝑎[ 𝑖, 𝑗 ]

with a filter 𝑔[ 𝑖, 𝑗 ].

Additive noise:
𝑥𝑖 ↦ 𝑥𝑖 + 𝑤𝑖

where 𝑤𝑖 ∼ 𝒩(0, 𝜎2) .

Soft distance:
log-likelihood ℓ(𝑥) =

log ( ∑𝑖 𝑎𝑖𝑒−‖𝑥−𝑥𝑖‖2/2𝜎2) .

Understanding that different implementations correspond to
the same operation is key to insightful research in the field.
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A point about notations

If 𝛼 = ∑N
𝑖=1 𝑎𝑖𝛿𝑥𝑖

is a probability distribution
and 𝑓 ∶ 𝑥 ↦ 𝑓(𝑥) ∈ ℝ is a continuous function,

N

∑
𝑖=1

𝑎𝑖𝑓(𝑥𝑖)
⏟⏟⏟⏟⏟
Programming

= ∫
𝑥

𝑓(𝑥) d𝛼(𝑥)
⏟⏟⏟⏟⏟

Integration

= ⟨ 𝛼 , 𝑓 ⟩
⏟
Analysis

= 𝔼𝑋∼𝛼[𝑓(𝑋)]
⏟⏟⏟⏟⏟

Probability

.

To study spaces of probability distributions,
the ⟨ 𝛼 , 𝑓 ⟩ notation is superior as it highlights
the linearitywith respect to both distributions and functions:

⟨ 1
2𝛼 + 1

2𝛽 , 𝑓 ⟩ = 1
2⟨ 𝛼 , 𝑓 ⟩ + 1

2⟨ 𝛽 , 𝑓 ⟩ ,
⟨ 𝛼 , 𝑓 + 𝑔 ⟩ = ⟨ 𝛼 , 𝑓 ⟩ + ⟨ 𝛼 , 𝑔 ⟩ .
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Major distances between distributions



Twomain questions [Sav15]

Image Ground truth Prediction 1 Prediction 2

When designing a distance between histograms:

• Should we leverage the distance ‖𝑥 − 𝑦‖ on the “ground space” of labels?
• How harshly should be we penalize errors on the estimation of the support?
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The total variation distance

The space of probability distributions on

{𝑥1, … , 𝑥K}

is a simplex of dimension K − 1.

The Total Variation is the L1–Manhattan distance:

TV(𝛼, 𝛽) = ∑
𝑖

|𝑎(𝑥𝑖) − 𝑏(𝑥𝑖)| .

This distance:
• Maxes out at 2 with disjoint supports.
• Pays no attention to ‖𝑥𝑖 − 𝑥𝑗‖.
• Pays no attention to unlikely events.

a(x )

a(x )

a(x )

1

2

3
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Maximum likelihood and entropy

If 𝛽 = (𝑏(1), … , 𝑏(K)) is amodel distribution on {1, … ,K},
the likelihood of observing a sample 𝑥 is 𝐿𝛽(𝑥) = 𝑏(𝑥) .

Assuming independence, the joint likelihood of a sample (𝑥1, … , 𝑥N) is:

𝐿𝛽(𝑥1, … , 𝑥N) = 𝑏(𝑥1) ⋯ 𝑏(𝑥N) .

Finding a sample (𝑥1, … , 𝑥N) thatmaximizes the likelihood is equivalent to minimizing:

ℓ𝛽(𝑥1, … , 𝑥N) = − 1
N

log [𝐿𝛽(𝑥1, … , 𝑥N)] = 1
N

N

∑
𝑖=1

log [1/𝑏(𝑥𝑖)]

If the 𝑥𝑖 are drawn independently according to a data distribution 𝛼, this converges to:

ℓ𝛽(𝛼) = lim
N→+∞

K

∑
𝑘=1

#{ 𝑖 | 𝑥𝑖 = 𝑘 }
N

log [1/𝑏(𝑘)] =
K

∑
𝑘=1

𝑎(𝑘) log [1/𝑏(𝑘)]
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Maximum likelihood and entropy

In practice, the data distribution 𝛼 is fixed and we try to find
a model distribution 𝛽 which is as likely as possible.

This is equivalent to minimizing the relative entropy or Kullback–Leibler divergence:

KL(𝛼, 𝛽) = ℓ𝛽(𝛼) − ℓ𝛼(𝛼) =
K

∑
𝑘=1

𝑎(𝑘) log [𝑎(𝑘)/𝑏(𝑘)].

We have that KL(𝛼, 𝛼) = 0 and KL(𝛼, 𝛽) ⩾ 0, since log is concave:

log [𝑏(𝑘)/𝑎(𝑘)] ⩽ 𝑏(𝑘)/𝑎(𝑘) − 1
⟹ log [𝑎(𝑘)/𝑏(𝑘)] ⩾ 1 − 𝑏(𝑘)/𝑎(𝑘)

⟹
K

∑
𝑘=1

𝑎(𝑘) log [𝑎(𝑘)/𝑏(𝑘)] ⩾
K

∑
𝑘=1

𝑎(𝑘) [1 − 𝑏(𝑘)/𝑎(𝑘)] = 0 .
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First properties of the relative entropy

KL(𝛼, 𝛽) = ∑K
𝑘=1 𝑎(𝑘) log [𝑎(𝑘)/𝑏(𝑘)] = ∫

𝑥
𝑎(𝑥) log [𝑎(𝑥)/𝑏(𝑥)] d𝑥 :

• Is not symmetric – remember it as KL(data |model).
• Is tied to an assumption of independence.
• Historically: compression on communication networks ⟹ .zip format.

Crucially, the relative entropy:

• Pays no attention to ‖𝑥𝑖 − 𝑥𝑗‖.
• Pays a lot of attention to unlikely events: log(0+) = −∞.
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Information geometry: the Fisher–Raometric on statistical manifolds [Fey17]

The Gauss map defines a parametric surface:

𝒩 ∶ (𝑚, 𝜎) ∈ ℝ × ℝ+ ↦ 𝒩(𝑚, 𝜎) ∈ ℙ(ℝ) .

Direct computations show that:

KL(𝒩(𝑚 + d𝑚, 𝜎 + d𝜎), 𝒩(𝑚, 𝜎))

=
1
2d𝑚2 + d𝜎2

𝜎2 + 𝑜(d𝑚2, d𝜎2)

⟹ Poincarémetric on the upper half-plane.
With its invariance to translation and scalings,

the relative entropy induces a hyperbolic geometry
on the surface of Gaussian distributions.
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Kernel norms: recover compatibility with the addition

For sources 𝛼 = ∑𝑖 𝑎𝑖𝛿𝑥𝑖
and targets 𝛽 = ∑𝑗 𝑏𝑗𝛿𝑦𝑗

,
choose a symmetric function 𝑔 that induces
a convolution kernel 𝑘 = 𝑔 ⋆ 𝑔 and use:

d𝑘(𝛼, 𝛽) = ‖ 𝑔 ⋆ 𝛼 − 𝑔 ⋆ 𝛽 ‖2
𝐿2

= ⟨ 𝛼 − 𝛽 , 𝑘 ⋆ (𝛼 − 𝛽) ⟩

= ∑
𝑖

∑
𝑗

𝑎𝑖𝑎𝑗 𝑘(𝑥𝑖, 𝑥𝑗)

− 2∑
𝑖

∑
𝑗

𝑎𝑖𝑏𝑗 𝑘(𝑥𝑖, 𝑦𝑗)

+ ∑
𝑖

∑
𝑗

𝑏𝑖𝑏𝑗 𝑘(𝑦𝑖, 𝑦𝑗) .

Distributions 𝛼 and 𝛽.

Blurred signal 𝑔 ⋆ (𝛼 − 𝛽).
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Kernel norms: recover compatibility with the addition

Kernel norms (aka. Hilbert or Sobolev norms, MaximumMean Discrepancies):

• Are quadraticwith respect to theweights 𝑎𝑖 and 𝑏𝑗.
• Are compatible with the addition – the geodesic from 𝛼 to 𝛽 is:

𝑡 ∈ [0, 1] ↦ (1 − 𝑡) 𝛼 + 𝑡 𝛽 .

• Havewildly different behaviors depending on 𝑘(𝑥, 𝑦): see the lab session.

Crucially, these formulas:

• Pay a lot of attention to ‖𝑥𝑖 − 𝑦𝑗‖.
• Pay little attention to unlikely events,
except if they are associated to large values of 𝑘(𝑥, 𝑦).
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Optimal transport (OT) generalizes sorting to spaces of dimension D > 1

If A = (x1, … , xN) and B = (y1, … , yN)
are two clouds of N points in ℝD, we define:

OT(A,B) = min
𝜎∈𝒮N

1
2N

N

∑
i =1

‖ x𝑖 − y𝜎(𝑖)‖
2

Generalizes sorting to metric spaces.
Linear problem on the permutation matrix P:

OT(𝛼, 𝛽) = min
P∈ℝN×N

N

∑
i, j =1

P𝑖,𝑗 ⋅ 1
2‖ x𝑖 − y𝑗‖

2 ,

s.t. P𝑖,𝑗 ⩾ 0 ∑𝑗P𝑖,𝑗 = 𝑎𝑖⏟⏟⏟⏟⏟
Each source point…

∑𝑖P𝑖,𝑗 = 𝑏𝑗 .⏟⏟⏟⏟⏟
is transported onto the target.

x1
x2
x3
x4

x5

y3
y5
y2

y4

y1

assignment
𝜎 ∶ [[1, 5]] →[[1, 5]]
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Practical use

Alternatively, we understand OT as:

• Nearest neighbor projection + incompressibility constraint.

• Fundamental example of linear optimization over the transport plan P𝑖,𝑗.

This theory induces twomain quantities:

• The transport plan P𝑖,𝑗 ≃ the optimal mapping 𝑥𝑖 ↦ 𝑦𝜎(𝑖).

• The “Wasserstein” distance √OT(A,B).
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The optimal transport plan
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TheWasserstein metric on statistical manifolds [PC18]

The Gauss map defines a parametric surface:

𝒩 ∶ (𝑚, 𝜎) ∈ ℝ × ℝ+ ↦ 𝒩(𝑚, 𝜎) ∈ ℙ(ℝ) .

Direct computations show that:

2 OT(𝒩(𝑚1, 𝜎1), 𝒩(𝑚2, 𝜎2))
= (𝑚1 − 𝑚2)2 + (𝜎1 − 𝜎2)2 .

⟹ Euclideanmetric on the upper half-plane.
Optimal transport lifts the geometry
of the sample space to the surface

of Gaussian distributions.
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Two canonical distances between Gaussian distributions [PC18]

Gaussians +Wassersteinmetric
= Euclidean.

Gaussians + relative entropy
= Poincaré. 30



Geometric solutions to least square problems [AC11]

Barycenter A∗ = arg min
A

4
∑
𝑖=1

𝜆𝑖 Loss( A , B𝑖 ) .

Euclidean barycenters.
Loss(A,B) = ‖A − B‖2

𝐿2

Wasserstein barycenters.
Loss(A,B) = OT(A,B) 31



How should we solve the OT problem?

Key dates for discrete optimal transport with N points:

• [Kan42]: Dual problem of Kantorovitch.
• [Kuh55]: Hungarian methods in 𝑂(N3).
• [Ber79]: Auction algorithm in 𝑂(N2).
• [KY94]: SoftAssign = Sinkhorn + simulated annealing, in 𝑂(N2).
• [GRL+98, CR00]: Robust Point Matching = Sinkhorn as a loss.
• [Cut13]: Start of the GPU era.
• [Mér11, Lév15, Sch19]: multi-scale solvers in 𝑂(N logN).

• Solution, today: Multiscale Sinkhorn algorithm, on the GPU.

⟹ GeneralizedQuickSort algorithm,
≃ 𝑂(N logN) if D is small, fast 𝑂(N2) otherwise.
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Scaling up optimal transport to anatomical data

Progresses of the last decade add up to a ×100 - ×1000 acceleration:

Sinkhorn GPU
×10
−−→ + KeOps

×10
−−→ + Annealing

×10
−−→ + Multi-scale

With a precision of 1%, on a gaming GPU:

pip install
geomloss

+
modern GPU
(1 000 €)

⟹

10k points in 30-50ms 100k points in 100-200ms
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Recap on classical distances between probability distributions

The Total Variation:

• Invariant to the groundmetric ‖ 𝑥𝑖 − 𝑦𝑗 ‖, only cares about largeweights 𝑎𝑖 and 𝑏𝑗.

The relative entropy KL:

• Invariant to the groundmetric ‖ 𝑥𝑖 − 𝑦𝑗 ‖, cares about the ratio 𝑎𝑖 / 𝑏𝑗.

Kernel norms:

• More or less faitfhul to the groundmetric depending on 𝑘, easy to scale on GPUs.

Optimal transport distances:

• Extremely faithful to the groundmetric ‖ 𝑥𝑖 − 𝑦𝑗 ‖.
• Scalability is recent – still open on general graphs andmanifolds.
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Open problem 1: Topology-aware distances

“OT that preserves the neighborhood structure”?

The problem has been studied for decades:
• Optimization: Quadratic assignment…
• Optimal Transport: Gromov–Wasserstein…
• Fluidmechanics: Camassa–Holm equation…
• Shape analysis: LDDMM, SVF…
• Statistics: Stein Variational Gradient Descent…
• Deep learning: Neural ODEs…

Mature tools exist but remain
⩾ 100 slower than Optimal Transport.

Initial configuration.

Diffeomorphic displacement.
35



Open problem 2: The curse of dimensionality

In high dimension, the matrix of
Euclidean distances stops

being informative.

Standard kernels and OTmetrics are
overwhelmed by statistical noise.

How can we computemeaningful
distances and gradients?

GANs and VAEsminimize a distance
between a synthetic sample and a

reference data sample.
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Dual norms: a fundamental insight from functional analysis

Loss(𝛼, 𝛽) = max
𝑓 ∈ 𝐵

⟨ 𝛼 − 𝛽 , 𝑓 ⟩,

look for 𝜃∗ = arg min
𝜃

max
𝑓 ∈ 𝐵

⟨ 𝛼(𝜃) − 𝛽 , 𝑓 ⟩

• 𝐵 = { ‖ 𝑓 ‖∞ ⩽ 1 } ⟹ Loss = TV norm:

• Zero geometry, always saturates on disjoint samples.

• Toomany test functions.

• 𝐵 = { ‖ 𝑓 ‖2
𝐿2 + ‖ ∇𝑓 ‖2

𝐿2 + ⋯ ⩽ 1 } ⟹ Loss = kernel norm:

• Screening artifacts – see lab session.

• In high dimension, samples are at equal distance from each other.
“Smooth” functions are either “constant” or “bounded”: fall back on TV behavior.
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Dual norms: link with the GANs literature

Loss(𝛼, 𝛽) = max
𝑓 ∈ 𝐵

⟨ 𝛼 − 𝛽 , 𝑓 ⟩,

look for 𝜃∗ = arg min
𝜃

max
𝑓 ∈ 𝐵

⟨ 𝛼(𝜃) − 𝛽 , 𝑓 ⟩

• 𝐵 = { 𝑓 is 1-Lipschitz } ⟹ Loss = Wasserstein-1:

• Modern solvers are nearly as efficient as a closed formula.

• Useless in (ℝ512×512, ‖ ⋅ ‖2): the ground cost makes no sense.

• 𝐵 ≃ { 𝑓 is 1-Lipschitz } ⋂ { 𝑓 is a CNN } ⟹ Loss = Wasserstein–GAN :

• Use perceptual test functions.

• No simple formula: use gradient ascent.
Leads to a cumbersomemin-max optimization.
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Open problem 2: Understand the impact of domain-specific test functions 𝑓

Similar story for diffusionmodels: we use
CNNs (U-Nets…) to predict the gradient of
the distance to the set of natural images.

The interplay betweenmathematical
insights derived from toy models and
numerical experiments onmodern

hardware is at the heart of ML research.

Let’s play with gradient descent to
build an intuition about

classical formulas!

Diffusion and score-basedmodels
estimate a gradient of the distance to the

support of a reference data sample.
39
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