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Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).
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HeKA: a translational research team for public health

Inserm

Hospitals

Inria

Universities
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Mymainmotivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
⟹ pyKeOps library for distance and kernel matrices, 800k+ downloads.

2. Scale up pharmacovigilance to the full French population:
⟹ survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
⟹ GeomLoss, truly scalable optimal transport in Python.
⟹ scikit-shapes, beta release in September.

4



Today’s focus –medical imaging

Three main characteristics:

• Heterogeneous data: patient history, images, etc.
• Small stratified samples: 10 – 1 000 patients per group.
• Dealing with outliers and the heavy tails of our distributions is a priority.
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Today’s talk – assuming that you would enjoy some nice figures

1. What is amedical image?

2. Diverse data structures create a complex software environment.

3. Mathematical frameworks to make sense of this complexity:

• Graph theory
• Discrete differential geometry
• Geometricmeasure theory
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What is amedical image?



What do you see on amedical image? [Zyg]

1. Pixels 2. Anatomy 3. Function
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What do you see on amedical image? [Zyg]

1. Pixels 2. Anatomy 3. Function

Simplifying a bit, each level of analysis corresponds to
a way of grouping pixelswith their neighbors.
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1st level: a pixel grid

Nx × Ny × Nz array of pixels.

Bitmap images and volumes:
• .bmp, .png, .jpg
• Standard in radiology.

+ Orderedmemory structure.
+ Explicit neighborhoods.
+ Fast local filters.

→ Texture analysis.
→ Organ segmentation.
→ Pattern detection.
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2nd level: point clouds and 3D surfaces

Npoints × 3 array of (x, y, z) coordinates.

Clouds of points (± triangles):
• .svg
• Standard for video games.

+ Compact representation.
+ High precision geometry.
+ Easy to deform.

→ 3D visualization.
→ Anatomical atlas.
→ Shape analysis.
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3rd level: biomechanical and/or physiological model [Zyg]

Volumetric mesh,
graph of interactions.

Mechanical/biological model:
• Finite elements, networks.
• Standard for CAD.

+ Prior knowledge.
+ Robust to noise.
+ Realistic behaviour.

→ Physiological interpretation.
→ Inferwhat cannot be seen (stress).
→ Simulate a surgery.

10



Strengths andweaknesses of these image formats

Looking for the neighbors of a point in 3D space?

• On a grid : read adjacent memory cells.
• With N points (x, y, z) : computation of N distances.

Want to rotate a bone by 10°?

• On a grid : artifacts, loss of details, transfers betweenmemory cells.
• With N points (x, y, z) : simple arithmetics on the coordinates.

Computational speed ⟺ Training on large datasets.
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An example in interventional radiology [MKM+02]

The team. The operating table.
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Canwe help physicians to navigate vessel networks? [EMML22]

Some examples of “vessel maps” that are currently available.
They are optimized for different purposes.
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A vessel map that preserves vessel lengths and curvatures [HBAF25]

internal iliac arteries
external iliac arteries

femoral arteries

Our newmethod, tailored to endovascular interventions.
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A brain arterial network, from three different perspectives

The contrast agent highlighted the left hemisphere.
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We take as input a CBCT scan: a volumetric X-ray
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Naive thresholding is not going to work here

Useless segmentation. Satisfying segmentation.
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Step 1: our volumetric X-Ray
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Step 2: compute a signed distance function to the surface
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Step 3: Frangi filtering via the second derivatives
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Step 4: centerline extraction
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Step 5: with local radii
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Step 6: topological pruning
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Step 7: curvature estimation
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Step 8: coarse graph structure
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Step 9: recursive planar embedding

b1

v

b2 b3

U1
U2

U3

Uv
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Step 10: iterative refinement

Force-directed

layout refinement
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A typical result: planning an intervention to reach an aneurysm
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Unlocking population studies
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Portability: unfolding the popliteal artery across the knee
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To summarize

AI = statistical regressionmethod + relevant computational model.

In medical imaging, we represent patient data as:

1. A 2D or 3D pixel grid.
2. An array of (x, y, z) coordinates.
3. Aweb of complex interactions.
4. All three at once!

In most cases, we define a large structured formula:

image
F

−−→ F (image) ≃ diagnostic

F is a parametric computing architecture
≃model to fit ≃ network to train. 31



Software bottlenecks for AI research



The AI revolution is driven by gaming computers

Digital images andmachine learning have been studied for decades.
Breakthrough in 2010-15 : using PlayStations to do science became easy.

Research effort at all levels towards:
• Increasingly powerful computers.
• Increasingly convenient software toolkits.
• Increasingly relevantmodels.

Spectacular results in a few applications
⟹ massive investments, industry + governments.

10,000 cores on a GPU.
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For grid images: a mature ecosystem

Main motivation for AI in 2012-2022: self-driving cars.
Key challenges: segment the environment, detect other actors.

Two full software suites to manipulate images as grids of pixels:
TensorFlow/JAX (Google) and PyTorch (Facebook-Meta). 33



To go beyond prototypes, engineers need a full software suite

Graphics: Printer + Driver + Photoshop ⟹ Illustrations

Tabular data: GPU + cuBLAS + PyTorch
TensorFlow

⟹ “Classical”
neural networks

Pixel grids: GPU + cuDNN + PyTorch
TensorFlow

⟹ Convolutional
neural networks

Point clouds
and graphs :

GPU + CUDA + ?? ⟹ Geometric
neural networks
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Scientific computing libraries represent most objects as tensors

Context. Constrainedmemory accesses on the GPU:

• Long access times to the registers
penalize the use of large dense arrays.

• Hard-wired contiguousmemory accesses
penalize the use of sparsematrices.

Challenge. In order to reach optimal run times:

• Restrict ourselves to operations that are supported
by the constructor: convolutions, FFT, etc.

• Develop new routines from scratch in C++/CUDA
(FAISS, KPConv…): several months of work.

M[ i , j ]

Dense array

(in, jn, Mn)

Sparsematrix 35



The KeOps library: efficient support for symbolic matrices

Solution. KeOps – www.kernel-operations.io:

• For PyTorch, NumPy, Matlab and R, on CPU and GPU.
• Automatic differentiation.
• Just-in-time compilation of optimized C++ schemes,
triggered for every new reduction: sum, min, etc.

If the formula “F” is simple (⩽ 100 arithmetic operations):
“100k × 100k” computation → 10ms – 100ms,
“1M × 1M” computation → 1s – 10s.

Hardware ceiling of 1012 operations/s.
×10 to ×100 speed-up vs standard GPU implementations

for a wide range of problems.

F( xi , yj )

Symbolic matrix
Formula + data

• Distances d(xi,yj).
• Kernel k(xi,yj).
• Numerous
transforms.
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A first example: efficient nearest neighbor search in dimension 50

Create large point clouds using standard PyTorch syntax:
import torch
N, M, D = 10**6, 10**6, 50
x = torch.rand(N, 1, D).cuda() # (1M, 1, 50) array
y = torch.rand(1, M, D).cuda() # ( 1, 1M, 50) array

Turn dense arrays into symbolicmatrices:
from pykeops.torch import LazyTensor
x_i, y_j = LazyTensor(x), LazyTensor(y)

Create a large symbolic matrix of squared distances:
D_ij = ((x_i - y_j) ** 2).sum(dim=2) # (1M, 1M) symbolic

Use an .argmin() reduction to perform a nearest neighbor query:
indices_i = D_ij.argmin(dim=1) # -> standard torch tensor
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The KeOps library combines performance with flexibility

Script of the previous slide = efficient nearest neighbor query,
on parwith the bruteforce CUDA scheme of the FAISS library…

And can be used with anymetric!

D_ij = ((x_i - x_j) ** 2).sum(dim=2) # Euclidean
M_ij = (x_i - x_j).abs().sum(dim=2) # Manhattan
C_ij = 1 - (x_i | x_j) # Cosine
H_ij = D_ij / (x_i[...,0] * x_j[...,0]) # Hyperbolic

KeOps supports arbitrary formulas and variableswith:

• Reductions: sum, log-sum-exp, K-min, matrix-vector product, etc.
• Operations: +, ×, sqrt, exp, neural networks, etc.
• Advanced schemes: batch processing, block sparsity, etc.
• Automatic differentiation: seamless integration with PyTorch. 38



KeOps lets users work withmillions of points at a time

Benchmark of a Gaussian convolution 𝑎𝑖 ← ∑𝑁
𝑗=1 exp(−‖𝑥𝑖 − 𝑦𝑗‖2

ℝ3) 𝑏𝑗
between clouds of N 3D points on a A100 GPU.

100 1k 10k 100k 1M

100𝜇s

1ms

10ms

100ms

1 s

out of memory!

error!

Number of points N

NumPy (CPU)

PyTorch (GPU)

+ .compile()

KeOps (GPU)

+ batch(100)
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Yet another ML compiler?

Many impressive tools out there (Taichi, Numba, Triton, Halide…):

• Focus on generality (software + hardware).
• Increasingly easy to use via e.g. PyTorch 2.0.

KeOps fills a different niche (a bit like cuFFT, FFTW…):

• Focus on a single major bottleneck: geometric interactions.
• Agnosticwith respect to Euclidean / non-Euclidean formulas.
• Fully compatible with PyTorch, NumPy, R.
• Can actually be used bymathematicians.

KeOps is a bridge between geometers (with a maths background)
and compiler experts (with a CS background).
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For point clouds and graphs: work in progress

Brain arterial network.
How do we process this object?

An ecosystem under construction:
• KeOps : since 2017

• Fast learning with point clouds.

• PyG : since 2018
• Fast learning with graphs.

• Warp, FEniCSx and Taichi : since 2018
• Fast learning with physics.

• PyVista and Vedo : since 2019
• 3D visualization.

• scikit-shapes: in 2025
• Easymorphometrics.

Canwe find a unifying perspective?
41



Graph theory



Graphs = local neighborhood structures

The K-NN graph describes
the local structure of a dataset.

Untangling a soup of edges to produce
a global understanding is hard.
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Simple archetypes [TDGC+21]

Cliques are like balls
with positive curvature.

Grids are like planes
with flat curvature.

Trees are like saddles
with negative curvature.
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Embeddingmethods such as UMAP are excellent diagnostic tools [Wil]

Visualizing the set of integer numbers
1, 2, 3, …, 8,000,000.

Visualizing the differentiation of
Hematopoietic stem cells.
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Since 2012, we have grown used to convolutional neural networks [PMC11]
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Canwe apply this methodology to higher-level descriptions? [EPW11, Man11]

1. Pixels 2. Anatomy 3. Function

Simplifying a bit, each level of analysis corresponds to
a way of grouping pixelswith their neighbors.
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What is a convolution?

Convolution (i.e. weighted average of the neighboring pixels) :
Cheap generalization of the product “a ⋅ x”,
parameterized by the coefficients of a small filter 𝜑.

⋆ =

𝜑 x 𝜑 ⋆ 𝑥
48
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What is a convolution?

Convolutions on grids:

• Are cheap.

• Enable pattern detection and texture analysis.

• Proven track record since the 1960’s:
Gaussian blur, edge detectors, Laplacian pyramids,
wavelets, JPEG2000, convolutional neural networks…
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Message-passing on graphs [DJL+20]

x [ i, j ] ← ∑k,l 𝜑 [ k, l ] ⋅ x [ i − k, j − l ] x [ i ] ← ∑i↔k 𝜑(x [ i ], x[ k ], edge [ i, k ] )
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Multiscale architectures on graphs [Mal16, BBCV21]

Grid convolutions
+ downsamplings.

Graph convolutions
+ downsamplings.
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The promises of geometric deep learning

We intend to leverage the intrinsic structure of:

• Point clouds.
• Surface and volumemeshes.
• Molecular graphs, proteins.
• Social and communication networks.

Unfortunately, things are not that simple.
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Problem 1: How dowe deal with the lack of orientation? [CGC+20, NoJ07]

CNNs learn oriented
curve detectors.

Vanilla graph convolutions
define isotropic filters.

Hairy ball theorem: no
globally consistent 2D
coordinates on a sphere.
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Problem 2: How dowe deal with varying sampling densities? [SSC19]

MRI slice:
voxel size = 1 mm3.

“Hell is other people’s meshes”
– Jean-Paul Sartre

Intrinsic triangulations.
Can we use them for ML?
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Problem 3: How dowe deal with highly non-Euclidean graphs? [TDGC+21]

Downsampling a grid is easy. How do we downsample
a clique?

How do we handle
bottlenecks?
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Problem 4: GPUs are not optimized for graphs

Fixed + contiguous neighborhoods
⟹ Optimal compilation.

1

2

3

4

5

6

1
2
3
4
5
6

+

+

Varying sizes + randommemory accesses
⟹ x100 slow-down.
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Problem 5: The range of target applications is too wide. [Dil15, Lu19, Gra19]

Molecules. Lidar scans. Social networks.
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A fast-growing community

In 2017, geometric deep learning was a solution in search of a problem.

With an appealing pitch, it attracted:

• Computer scientists, looking for new ways of combining features.

• Mathematicians, looking for new applications of their insights.

• Domain experts, looking for a breakthrough on their data.
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A blooming corpus of methods

The literature since 2017:

• Dozens of different convolution operators.

• Renewed interest in theoretical graph ML.

• Useful extensions for PyTorch: PyG, DGL, KeOps…

• Cross-pollination between different fields:
computer graphics, signal processing, chemistry…
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A field without consensus

Unfortunately, it is hard to recommend somemethods over the others:

• Applications arewildly different from each other.

• Most theoretical and experimental works are proof-of-concepts.

• Benchmarks are highly unreliable.

Realistically, inmedical imaging, we must go beyond the simple
“data as graph” model and use a stronger structure.
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The limitations of graph theory

Home turf for graph theory. Is this good enough?

Group theory is everywhere: see e.g. the set of complex numbers (ℂ, +, 0).
But if you forget that it is also a field of dimension 2,

you’ll miss out on themost interesting results. 61



Discrete differential geometry



On the blackboard

• Geometric structure ⟺ Function smoothness
• The cotan Laplacian
• The heat method for geodesic distances
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DiffusionNet [SACO22]
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Geometric measure theory



Probability distribution 𝛼 = weights 𝑎𝑖 at locations 𝑥𝑖

Histogram:
variableweights 𝑎𝑖,
fixed locations 𝑥𝑖.

Sample:
fixedweights 1/N,

variable locations 𝑥𝑖.

Weighted point cloud:
variableweights 𝑎𝑖,
variable locations 𝑥𝑖.

Discrete sum 𝛼 = ∑N
𝑖=1 𝑎𝑖𝛿𝑥𝑖

⟹ Continuous density 𝛼 = ∫
𝑥

𝑎(𝑥) d𝑥 .
Today, we assume that 𝑎 ⩾ 0 and sums up to 1.
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Quantifying distances between probability distributions

Wemust handle both discrete and
continuous distributions.

Wemust choose if 𝛼 is closer
to 𝛽 (samemean value)
or to 𝛾 (same support).
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Application 1: One-sample and Two-sample testing

One-sample test:
discrete observation 𝛼,
continuousmodel 𝛽.

Two-sample test:
two discrete observations 𝛼 and 𝛽.

Null hypothesis: 𝛼 and 𝛽 come from the same distribution.
Test: reject if d(𝛼, 𝛽) is too large.
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Example: Splitting a population evenly for a clinical trial

Problem 1: ensure that the treatment
and control groups have similar

characteristics.

Problem 2: given a large population,
pick a group of control patients that
have similar characteristics to our

treated patients. 67



Application 2: Classification = regression in a space of distributions

Linear regression:
• Encode class labels as integer numbers

𝑙(𝑥) ∈ {1, 2, 3} .

• Predict a score 𝑠(𝑥) at every location 𝑥.

• Minimize the least square error:

1
N

N

∑
𝑖=1

∣𝑙(𝑥) − 𝑠(𝑥)∣2 .

Massive bias depending on
the ordering of the labels.

1
2 3

2 input features, 3 classes.
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Application 2: Classification = regression in a space of distributions

Logistic regression:
• Encode class labels as probability
distributions 𝛿(𝑥) ∈ ℙ({1, 2, 3}) .

• Predict a vector of scores 𝑠𝑖(𝑥) at every
location 𝑥 and turn it into a probability
distribution using the SoftMax:
𝛼(𝑥) = (𝑒𝑠1(𝑥), 𝑒𝑠2(𝑥), 𝑒𝑠3(𝑥)) / ∑ 𝑒𝑠𝑖(𝑥)

• Minimize the relative entropy:

1
N

N

∑
𝑖=1

KL(𝛿(𝑥), 𝛼(𝑥)) .

Invariant to the ordering of the labels.

(1,0,0)

(0,1,0)

(0,0,1)

2 input features, 3 classes.
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Application 3: Generativemodelling

Generative Adversarial Networks and
Variational Auto-Encodersminimize a

distance between a synthetic sample and
a reference data sample.

Diffusion and score-basedmodels
estimate a gradient of the distance to the

support of a reference data sample.
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Application 4: Shape registration [KCC17]

Curve:
one weight per segment.

Surface:
one weight per triangle.

Segmentationmask:
one weight per voxel.

Encoding shapes as distributions guarantees an invariance to resamplings.
Wemay work with basic (𝑥, 𝑦, 𝑧) coordinates or with better features.
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Application 4: Shape registration [SFL+21]

Registration algorithmsminimize a distance
between a deformable model 𝛼 and the fixed target 𝛽. 72



A point about implementations

Histogram:
explicitweights 𝑎𝑖,
implicit locations 𝑥𝑖.

Sample:
implicitweights 1/N,
explicit locations 𝑥𝑖.

Weighted point cloud:
explicitweights 𝑎𝑖,
explicit locations 𝑥𝑖.

Depending on the application, we may choose
a different encoding for our distributions.
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A point about implementations

Histogram:
explicitweights 𝑎𝑖,
implicit locations 𝑥𝑖.

Sample:
implicitweights 1/N,
explicit locations 𝑥𝑖.

Weighted point cloud:
explicitweights 𝑎𝑖,
explicit locations 𝑥𝑖.

Understanding that different implementations correspond to
the same operation is key to insightful research in the field.
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A point about implementations

Convolution
of the density map 𝑎[ 𝑖, 𝑗 ]

with a filter 𝑔[ 𝑖, 𝑗 ].

Additive noise:
𝑥𝑖 ↦ 𝑥𝑖 + 𝑤𝑖

where 𝑤𝑖 ∼ 𝒩(0, 𝜎2) .

Soft distance:
log-likelihood ℓ(𝑥) =

log ( ∑𝑖 𝑎𝑖𝑒−‖𝑥−𝑥𝑖‖2/2𝜎2) .

Understanding that different implementations correspond to
the same operation is key to insightful research in the field.
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A point about notations

If 𝛼 = ∑N
𝑖=1 𝑎𝑖𝛿𝑥𝑖

is a probability distribution
and 𝑓 ∶ 𝑥 ↦ 𝑓(𝑥) ∈ ℝ is a continuous function,

N

∑
𝑖=1

𝑎𝑖𝑓(𝑥𝑖)
⏟⏟⏟⏟⏟
Programming

= ∫
𝑥

𝑓(𝑥) d𝛼(𝑥)
⏟⏟⏟⏟⏟

Integration

= ⟨ 𝛼 , 𝑓 ⟩
⏟
Analysis

= 𝔼𝑋∼𝛼[𝑓(𝑋)]
⏟⏟⏟⏟⏟

Probability

.

To study spaces of probability distributions,
the ⟨ 𝛼 , 𝑓 ⟩ notation is superior as it highlights
the linearitywith respect to both distributions and functions:

⟨ 1
2𝛼 + 1

2𝛽 , 𝑓 ⟩ = 1
2⟨ 𝛼 , 𝑓 ⟩ + 1

2⟨ 𝛽 , 𝑓 ⟩ ,
⟨ 𝛼 , 𝑓 + 𝑔 ⟩ = ⟨ 𝛼 , 𝑓 ⟩ + ⟨ 𝛼 , 𝑔 ⟩ .
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On the blackboard

• Kernel norms
• Optimal transport
• Diffeomorphic flows
• Varifolds and other extensions
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Robustness to topological noise [KCC17]
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Conclusion

• Medical imaging iswell-funded and diverse.
Much deeper than “simply” training U-Nets to segment 2D slices.

• Ongoing effort to create a convenient toolbox for all data structures.

Twomajor theoretical frameworks:

• Discrete differential geometry:
CPU-friendly, geodesic distances, expects clean topology.

• Geometric measure theory:
GPU-friendly, Euclidean distances, robust to dirty data.

⟹ To bridge the gap between the two, see you on Monday! ⟸
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