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Background in mathematics and data sciences:
2012-2016 ENS Paris, mathematics.

2014-2015 M2 mathematics, vision, learning at ENS Cachan.

2016-2019 PhD thesis in medical imaging with Alain Trouvé at ENS Cachan.

2019-2021 Geometric deep learning with Michael Bronstein at Imperial College.
2021+ Medical data analysis in the HeKA INRIA team (Paris).
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My main motivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
= pyKeOps library for distance and kernel matrices, 900k+ downloads.

2. Scale up pharmacovigilance to the full French population:
= survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
—> Geomloss, truly scalable optimal transport in Python.
— scikit-shapes, beta release in January.



A vessel map that preserves vessel lengths and curvatures [ 1
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Our new visualization method, tailored to endovascular interventions.




A consistent theory of smoothness for diverse data structures

1. The clean method: Laplacians and heat diffusions
2. The fast method: smoothing with local averages
3. Sinkhorn normalization : fast smoothing — clean diffusion

4. Applications



Laplacians and heat diffusions



The Laplace operator
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Properties of the Laplace operator

By construction, the Laplacian A =46 isa Tpoints X Mpoints Matrix that:
i) AT =A is symmetric
ii) Al=0 cancels constant signals
iii) fITAf>0 is a positive operator
iv) i#j= A,; <0 hasnon-positive off-diagonal coefficients

This can be generalized to weighted, continuous domains
with e.g. the cotan Laplacian on triangle meshes.



Regularizing signals with heat diffusion

To regularize a signal f, we may compute:
Regularize(f) = argmin |f — g|®> + ¢'Ag
g

= (T+A)1f = =ebf

“Regularize” corresponds to a linear diffusion operator () that:

i) Q' =Q is symmetric
) Q1=1 preserves constant signals
iii) Spectrum(Q) C [0,1] isadamping operator
)

iv f20=Qf>0 has non-negative coefficients

Diffusion preserves the mass of input signals:

(L,Qf) = (@1, f) = (L,f)



DiffusionNet [ ]
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Super neat, but requires a pre-factorization of A.
Not GPU or real-time friendly. 10



Smoothing with local averages



Graph convolutions and smoothing with adjacency matrices
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S'is a smoothing matrix that:
i) ST =8 is symmetric
ii) frSf>0 is a positive operator

i) f>0= Sf>0 hasnon-negative coefficients

But S does not really behave like a diffusion: S1 # 1.

11



How to normalize our adjacency matrix S to recover a well-behaved diffusion ?

1. Row normalization. Use Q = (S1)7'8.
This guarantees the preservation of constants: Q1 = 1.

Problem: we lose symmetry, Q" # Q, (1,Qf) #+ (1, f).

2. Symmetric normalization. Use Q = (S1)"1/2.5(51)"1/2,
This guarantees symmetry: Q" = Q.
Problem: we do not preserve constants, Q1 #+ 1.

3. Sinkhorn normalization. Iterate step 2!
This converges quickly to a diagonal matrix A > 0 such that Q1 = ASA1 = 1.
We guarantee both symmetry and the preservation of constants.

Sinkhorn turns any smoothing matrix S > 0 into a genuine diffusion operator.
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A simple and versatile algorithm

Algorithm 1 Symmetric Sinkhorn Normalization

Require: Smoothing matrix § € RV*N

1: Initialize A < Iy > A is a diagonal matrix, stored as a vector of size N.
2: while >, [A;; » . SijAj; — 1] is larger than a tolerance parameter do
3: di <25 Sij Ay > Matrix-vector product with S.
4: AN — /Ay /d; > Coordinate-wise update on a vector of size V.
5: end while
6: return Q = ASA > The diffusion @ is a positive scaling of S.
This is much cheaper and more general than using: N GPU Sinkhorn CPU LU
« Q= (I + A)!viaadirectsolver 10,000 3 65
. 50,000 21 393
or a sparse Cholesky decomposition. 100,000 89 1,030
A d eicend . 250,000 448 3510
+ () = e © via a truncated eigendecomposition. 500,000 1817 9100
1,000,000 6,789 23,600
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Sinkhorn normalization



Fast convergence: monitoring the average value of |1 — 1|
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After 5 iterations: 0.01% error.
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Fast convergence: monitoring the average value of |1 — 1|

Geometric graph with n nodes.
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After 5 iterations: 0.5% error.
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Fast convergence: monitoring the average value of |1 — 1|

Armadillo surface - 5,000 points.
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After 5 iterations: 0.1% error.
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Fixing the “central node bias”
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(a) Input Dirac (b) Row (c) Symmetric (d) Spectral (e) Sinkhorn
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Well-posedness

Focus on convolution with a Gaussian or exponential kernel on R%:

S,f+x; = Zk(xi,xj)mjf(xj)
J
We can interpret the diagonal scaling matrix A for @, = AS, A

as pointwise multiplication with a positive, continuous function \.

Using standard lemmas from optimal transport theory, we show that:

oo oo

ph—=p = M= = Q,f =NSNf— ASAf=Qf.
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Spectral convergence - 10th eigenvector on the Armadillo
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Gradient flows - without regularization

t =0.00 t = 50.00
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Wasserstein gradient flow of the Energy Distance.
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Gradient flows - with a Gaussian regularization at scale 0 = 0.07

Unnormalized
[

Normalized
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Shape metrics - geodesic interpolation and extrapolation

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Normalizing LDDMM kernel metrics fixes the “exploding geodesics” problem.
We obtain a versatile and topology-preserving metric for shape analysis.

22



Use a normalized Gaussian convolution instead of a pre-factored Laplacian

Method FAUST SCAPE SI19  source ULRSSM (PC) Q-DiffNet
% DiffNet 1.6 2.2 4.5 % ) . ¥ .
= ULRSSM 1.6 21 46 A » w
. DiffNet (PC) 3.0 2.5 7.5
§ ULRSSM (PC) 2.3 2.4 5.1
;:E Q-DiffNet (QFM) 2.5 3.1 4.1

Q-DiffNet 2.1 2.4 3.5

(a) Mean Geodesic Error (b) Visualization of Correspondences

Figure 6: Evaluation of Q-DiffNet for shape matching. (a) Mean geodesic error comparison. “PC”
denotes retraining on point clouds. (b) Predicted correspondences on SHREC19 visualized via
color transfer. ULRSSM trained on point clouds confuses symmetric parts (e.g., legs).
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Conclusion

We used to face dilemmas:
« Smooth with Laplacians (expensive) or with local averages (biased).
+ Normalize operators with row-wise or symmetric scaling.
Asimple trick - iterate the symmetric scaling update:
« Cheap and versatile.
« Turn convolutions into genuine diffusion operators.
+ Fix the “central node bias”.

Non-intrusive method to enforce theoretical axioms.
Ideally suited to modern parametric models.
24
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