
Normalizing diffusion kernels with optimal transport
How to encode smoothness?

Nathan Kessler, Robin Magnet, Jean Feydy
HeKA team, Inria Paris, Inserm, Université Paris-Cité

PR[AI]RIE-PSAI Institute

Geometric Deep Learning and Generative Models for 3D Human, Lille

Wednesday, 26 November 2025

1

Who am I?

Background inmathematics and data sciences:
2012–2016 ENS Paris, mathematics.

2014–2015 M2mathematics, vision, learning at ENS Cachan.

2016–2019 PhD thesis inmedical imagingwith Alain Trouvé at ENS Cachan.

2019–2021 Geometric deep learningwith Michael Bronstein at Imperial College.

2021+ Medical data analysis in the HeKA INRIA team (Paris).

2

HeKA: a translational research team for public health

Inserm

Hospitals

Inria

Universities

3

Mymainmotivation

Develop robust and efficient software that stimulates other researchers:

1. Speed up geometric machine learning on GPUs:
⟹ pyKeOps library for distance and kernel matrices, 900k+ downloads.

2. Scale up pharmacovigilance to the full French population:
⟹ survivalGPU, a fast re-implementation of the R survival package.

3. Ease access to modern statistical shape analysis:
⟹ GeomLoss, truly scalable optimal transport in Python.
⟹ scikit-shapes, beta release in January.

4

A vessel map that preserves vessel lengths and curvatures [HBAF25]

internal iliac arteries
external iliac arteries

femoral arteries

Our new visualization method, tailored to endovascular interventions.

5

A consistent theory of smoothness for diverse data structures

1. The cleanmethod: Laplacians and heat diffusions

2. The fastmethod: smoothingwith local averages

3. Sinkhorn normalization : fast smoothing ↦ clean diffusion

4. Applications

6

Laplacians and heat diffusions

The Laplace operator

Graphwith 5 nodes.
Signals 𝑓 are vectors

(𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4).

‖𝑓‖2
smooth = (𝑓0 − 𝑓1)2 + ⋯ + (𝑓0 − 𝑓4)2

𝛿 =
⎛⎜⎜⎜⎜⎜
⎝

+1 −1
+1 −1
+1 −1
+1 −1

⎞⎟⎟⎟⎟⎟
⎠

is 𝑛edges × 𝑛points

‖𝑓‖2
smooth = ‖𝛿𝑓‖2 = 𝑓⊤ 𝛿⊤𝛿⏟

Δ
𝑓 = 𝑓⊤Δ𝑓

7

Properties of the Laplace operator

By construction, the Laplacian Δ = 𝛿⊤𝛿 is a 𝑛points × 𝑛points matrix that:

i) Δ⊺ = Δ is symmetric
ii) Δ1 = 0 cancels constant signals
iii) 𝑓⊤Δ𝑓 ⩾ 0 is a positive operator
iv) 𝑖 ≠ 𝑗 ⟹ Δ𝑖𝑗 ⩽ 0 has non-positive off-diagonal coefficients

This can be generalized to weighted, continuous domains
with e.g. the cotan Laplacian on triangle meshes.

8

Regularizing signals with heat diffusion

To regularize a signal 𝑓, we may compute:

Regularize(𝑓) = arg min
𝑔

‖𝑓 − 𝑔‖2 + 𝑔⊤Δ𝑔

= (𝐼 + Δ)−1𝑓 = ≃ 𝑒−Δ𝑓

“Regularize” corresponds to a linear diffusion operator 𝑄 that:

i) 𝑄⊺ = 𝑄 is symmetric
ii) 𝑄1 = 1 preserves constant signals
iii) Spectrum(𝑄) ⊂ [0, 1] is a damping operator
iv) 𝑓 ⩾ 0 ⟹ 𝑄𝑓 ⩾ 0 has non-negative coefficients

Diffusion preserves themass of input signals:

⟨1, 𝑄𝑓⟩ = ⟨𝑄1, 𝑓⟩ = ⟨1, 𝑓⟩
9

DiffusionNet [SACO22]

Super neat, but requires a pre-factorization of Δ.
Not GPU or real-time friendly. 10

Smoothing with local averages

Graph convolutions and smoothing with adjacencymatrices

Graphwith 5 nodes.
Signals 𝑓 are vectors

(𝑓0, 𝑓1, 𝑓2, 𝑓3, 𝑓4).

𝑆 = Degree + Adjacency =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

4 1 1 1 1
1 1
1 1
1 1
1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑆 is a smoothingmatrix that:
i) 𝑆⊺ = 𝑆 is symmetric
ii) 𝑓⊤𝑆𝑓 ⩾ 0 is a positive operator
iii) 𝑓 ⩾ 0 ⟹ 𝑆𝑓 ⩾ 0 has non-negative coefficients

But 𝑆 does not really behave like a diffusion: 𝑆1 ≠ 1.

11

How to normalize our adjacencymatrix 𝑆 to recover a well-behaved diffusion 𝑄?

1. Row normalization. Use 𝑄 = (𝑆1)−1𝑆.
This guarantees the preservation of constants: 𝑄1 = 1.
Problem: we lose symmetry, 𝑄⊤ ≠ 𝑄, ⟨1, 𝑄𝑓⟩ ≠ ⟨1, 𝑓⟩.

2. Symmetric normalization. Use 𝑄 = (𝑆1)−1/2 𝑆 (𝑆1)−1/2.
This guarantees symmetry: 𝑄⊤ = 𝑄.
Problem: we do not preserve constants, 𝑄1 ≠ 1.

3. Sinkhorn normalization. Iterate step 2!
This converges quickly to a diagonal matrix Λ > 0 such that 𝑄1 = Λ𝑆Λ1 = 1.
We guarantee both symmetry and the preservation of constants.

Sinkhorn turns any smoothingmatrix 𝑆 > 0 into a genuine diffusion operator.

12

A simple and versatile algorithm

This ismuch cheaper andmore general than using:
• 𝑄 = (𝐼 + Δ)−1 via a direct solver
or a sparse Cholesky decomposition.

• 𝑄 = 𝑒−Δ via a truncated eigendecomposition.

13

Sinkhorn normalization

Fast convergence: monitoring the average value of |𝑄1 − 1|

Random graph with 𝑛 nodes.

0 2 4 6 8 10 12 14 16 18 20
10 13

10 11

10 9

10 7

10 5

10 3

10 1

101

103
n = 250
n = 500
n = 1000
n = 2000

After 5 iterations: 0.01% error.
14

Fast convergence: monitoring the average value of |𝑄1 − 1|

Geometric graph with 𝑛 nodes.

0 2 4 6 8 10 12 14 16 18 20

10 6

10 4

10 2

100

102 n = 500
n = 1000
n = 2000
n = 4000

After 5 iterations: 0.5% error.
15

Fast convergence: monitoring the average value of |𝑄1 − 1|

Armadillo surface – 5,000 points.

0 2 4 6 8 10 12 14 16 18 20

10 8

10 6

10 4

10 2

100

point cloud 2D
point cloud 3D
voxel 2D
voxel 3D

After 5 iterations: 0.1% error.
16

Fixing the “central node bias”

17

Well-posedness

Focus on convolutionwith a Gaussian or exponential kernel on ℝ𝑑:

𝑆𝜇𝑓 ∶ 𝑥𝑖 ↦ ∑
𝑗

𝑘(𝑥𝑖, 𝑥𝑗)𝑚𝑗𝑓(𝑥𝑗)

We can interpret the diagonal scalingmatrix Λ for 𝑄𝜇 = Λ𝑆𝜇Λ
as pointwisemultiplicationwith a positive, continuous function 𝜆.

Using standard lemmas from optimal transport theory, we show that:

𝜇𝑡 ⇀ 𝜇 ⟹ 𝜆𝑡
‖⋅‖∞
−−→ 𝜆 ⟹ 𝑄𝜇𝑓 = 𝜆𝑡𝑆𝜇𝜆𝑡𝑓

‖⋅‖∞
−−→ 𝜆𝑆𝜆𝑓 = 𝑄𝑓 .

18

Spectral convergence – 10th eigenvector on the Armadillo

10 20 30 40
Eigenvalue index

0

50

100

150

200

La
pl

ac
ian

 ei
ge

nv
alu

e

Tetrahedra
Points
Gaussians
Voxels

(a) Triangles (b) Points (c) Gaussians (d) voxels (e) Surface Spectra

(f) Tetrahedra (g) Points (h) Gaussians (i) Voxels (j) Volume Spectra

10 20 30 40
Eigenvalue index

0

20

40

60

80

100

120

La
pl

ac
ian

 ei
ge

nv
alu

e

Triangles
Points
Gaussians
Voxels

19

Gradient flows – without regularization

t = 0.00

R
aw

t = 0.25 t = 0.75 t = 50.00

Wasserstein gradient flow of the Energy Distance.

20

Gradient flows – with a Gaussian regularization at scale 𝜎 = 0.07

t = 0.00
U

n
n

or
m

al
iz

ed
N

or
m

al
iz

ed
t = 0.25 t = 0.75 t = 50.00

21

Shapemetrics – geodesic interpolation and extrapolation

(a) Input Data (b) LDDMM (c) Normalized (d) Gaussian Mixtures

Normalizing LDDMM kernel metrics fixes the “exploding geodesics” problem.
We obtain a versatile and topology-preserving metric for shape analysis.

22

Use a normalized Gaussian convolution instead of a pre-factored Laplacian

23

Conclusion

We used to face dilemmas:

• Smoothwith Laplacians (expensive) or with local averages (biased).

• Normalize operators with row-wise or symmetric scaling.

A simple trick – iterate the symmetric scaling update:

• Cheap and versatile.

• Turn convolutions into genuine diffusion operators.

• Fix the “central node bias”.

Non-intrusive method to enforce theoretical axioms.
Ideally suited to modern parametric models.

24

References

References i

Guillaume Houry, Tom Boeken, Stéphanie Allassonnière, and Jean Feydy.

Untangling vascular trees for surgery and interventional radiology.

In International Conference on Medical Image Computing and Computer-Assisted
Intervention, page to appear. Springer, 2025.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov.

Diffusionnet: Discretization agnostic learning on surfaces.

ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

25

	Laplacians and heat diffusions
	Smoothing with local averages
	Sinkhorn normalization
	References

