Normalizing diffusion kernels with optimal transport

How to encode smoothness?

Nathan Kessler, Robin Magnet, Jean Feydy HeKA team, Inria Paris, Inserm, Université Paris-Cité PR[AI]RIE-PSAI Institute

Geometric Deep Learning and Generative Models for 3D Human, Lille

Wednesday, 26 November 2025

Who am I?

Background in mathematics and data sciences:

- **2012–2016** ENS Paris, mathematics.
- **2014–2015** M2 mathematics, vision, learning at ENS Cachan.
- **2016–2019** PhD thesis in **medical imaging** with Alain Trouvé at ENS Cachan.
- **2019–2021 Geometric deep learning** with Michael Bronstein at Imperial College.
 - **2021+ Medical data analysis** in the HeKA INRIA team (Paris).

HeKA: a translational research team for public health

Hospitals

Inria Inserm

Universities

My main motivation

Develop robust and efficient software that stimulates other researchers:

- 1. Speed up **geometric machine learning** on GPUs:
 - ⇒ **pyKeOps** library for distance and kernel matrices, 900k+ downloads.
- 2. Scale up **pharmacovigilance** to the full French population:
 - ⇒ **survivalGPU**, a fast re-implementation of the R survival package.
- 3. Ease access to modern statistical **shape analysis**:
 - ⇒ **GeomLoss**, truly scalable optimal transport in Python.
 - ⇒ **scikit-shapes**, beta release in January.

A vessel map that preserves vessel lengths and curvatures [HBAF25]

Our new visualization method, tailored to **endovascular** interventions.

A consistent theory of smoothness for diverse data structures

1. The clean method: Laplacians and heat diffusions

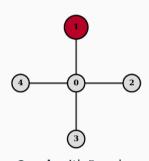
2. The **fast** method: **smoothing** with local averages

3. **Sinkhorn normalization**: **fast** smoothing \mapsto **clean** diffusion

4. Applications

Laplacians and heat diffusions

The Laplace operator



Graph with 5 nodes. **Signals** f are vectors $(f_0, f_1, f_2, f_3, f_4)$.

$$\|f\|_{\rm smooth}^2 \, = \, (f_0 - f_1)^2 + \dots + (f_0 - f_4)^2$$

$$\delta \,=\, \begin{pmatrix} +1 & -1 & & & \\ +1 & & -1 & & \\ +1 & & & -1 \\ +1 & & & & -1 \end{pmatrix} \quad \text{is} \quad n_{\text{edges}} \times n_{\text{points}}$$

$$\|f\|_{\mathsf{smooth}}^2 \, = \, \|\delta f\|^2 \, = \, f^\top \underbrace{\delta^\top \delta}_\Delta f \, = \, f^\top \Delta f$$

Properties of the Laplace operator

By construction, the **Laplacian** $\Delta = \delta^{\top}\delta$ is a $n_{\mathrm{points}} \times n_{\mathrm{points}}$ matrix that:

- i) $\Delta^{\top} = \Delta$ is symmetric
- ii) $\Delta {f 1} = 0$ cancels **constant** signals
- iii) $f^{\top} \Delta f \geqslant 0$ is a **positive** operator
- iv) $i
 eq j \Longrightarrow \Delta_{ij} \leqslant 0$ has non-positive **off-diagonal** coefficients

This can be **generalized** to weighted, continuous domains with e.g. the **cotan** Laplacian on triangle meshes.

Regularizing signals with heat diffusion

To **regularize** a signal f, we may compute:

$$\begin{aligned} \text{Regularize}(f) &= \arg\min_g \ \|f - g\|^2 \ + \ g^\top \Delta g \\ &= (I + \Delta)^{-1} f \ = \simeq e^{-\Delta} f \end{aligned}$$

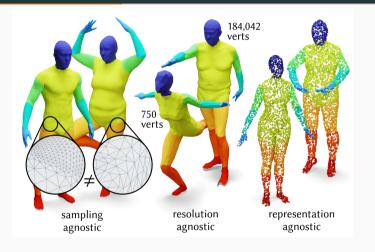
"Regularize" corresponds to a **linear diffusion operator** ${\cal Q}$ that:

- i) $Q^{\top} = Q$ is symmetric
- ii) $Q\mathbf{1}=\mathbf{1}$ preserves **constant** signals
- iii) Spectrum $(Q) \subset [0,1]$ is a **damping** operator
- iv) $f\geqslant 0\Longrightarrow Qf\geqslant 0$ has **non-negative** coefficients

Diffusion **preserves the mass** of input signals:

$$\langle \mathbf{1}, Qf \rangle = \langle Q\mathbf{1}, f \rangle = \langle \mathbf{1}, f \rangle$$

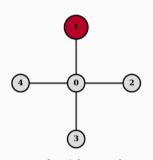
DiffusionNet [SACO22]



Super neat, but requires a **pre-factorization** of Δ . Not GPU or real-time friendly.

Smoothing with local averages

Graph convolutions and smoothing with adjacency matrices



Graph with 5 nodes. **Signals** f are vectors $(f_0, f_1, f_2, f_3, f_4)$.

S is a **smoothing** matrix that:

- i) $S^{\top} = S$ is symmetric
- ii) $f^{\top}Sf\geqslant 0$ is a **positive** operator
- iii) $f\geqslant 0\Longrightarrow Sf\geqslant 0$ has **non-negative** coefficients

But S does not really behave like a diffusion: $S1 \neq 1$.

How to normalize our adjacency matrix S to recover a well-behaved diffusion Q?

1. Row normalization. Use $Q = (S\mathbf{1})^{-1}S$.

This guarantees the **preservation of constants**: Q1 = 1.

Problem: we lose symmetry, $Q^{\top} \neq Q$, $\langle \mathbf{1}, Qf \rangle \neq \langle \mathbf{1}, f \rangle$.

2. Symmetric normalization. Use $Q = (S\mathbf{1})^{-1/2} S(S\mathbf{1})^{-1/2}$.

This guarantees **symmetry**: $Q^{\top} = Q$.

Problem: we do not preserve constants, $Q\mathbf{1} \neq \mathbf{1}$.

3. **Sinkhorn normalization.** Iterate step 2!

This converges quickly to a diagonal matrix $\Lambda>0$ such that $Q\mathbf{1}=\Lambda S\Lambda\mathbf{1}=\mathbf{1}$. We guarantee **both symmetry** and the **preservation of constants**.

Sinkhorn turns any smoothing matrix S>0 into a genuine diffusion operator.

A simple and versatile algorithm

Algorithm 1 Symmetric Sinkhorn Normalization

Require: Smoothing matrix $S \in \mathbb{R}^{N \times N}$

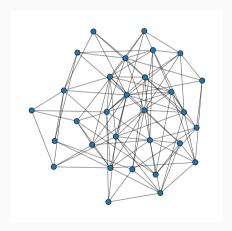
- 1: Initialize $\Lambda \leftarrow I_N$ $\Rightarrow \Lambda$ is a diagonal matrix, stored as a vector of size N.
- 2: while $\sum_{i} |\Lambda_{ii} \sum_{j} S_{ij} \Lambda_{jj} 1|$ is larger than a tolerance parameter do
- 3: $d_i \leftarrow \sum_j S_{ij} \Lambda_{jj}$ \triangleright Matrix-vector product with S.
- 4: $\Lambda_{ii} \leftarrow \sqrt{\Lambda_{ii}/d_i}$ \triangleright Coordinate-wise update on a vector of size N.
- 5: end while
- 6: **return** $Q = \Lambda S \Lambda$ \triangleright The diffusion Q is a positive scaling of S.

This is **much cheaper** and more **general** than using:

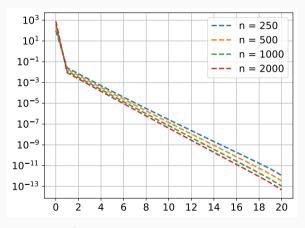
- $Q = (I + \Delta)^{-1}$ via a direct solver or a sparse Cholesky decomposition.
- $Q = e^{-\Delta}$ via a truncated eigendecomposition.

N	GPU Sinkhorn	CPU LU
10,000	3	65
50,000	21	393
100,000	89	1,030
250,000	448	3,510
500,000	1,817	9,100
1,000,000	6,789	23,600

Fast convergence: monitoring the average value of $\left|Q1-1\right|$

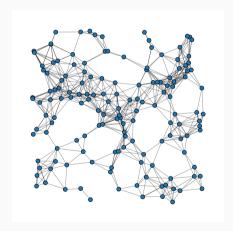


Random graph with n nodes.

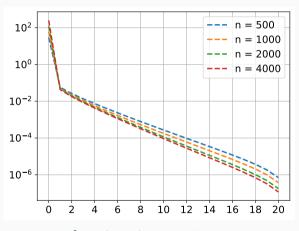


After 5 iterations: 0.01% error.

Fast convergence: monitoring the average value of $\left|Q1-1\right|$



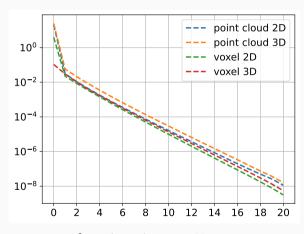
Geometric graph with n nodes.



After 5 iterations: 0.5% error.

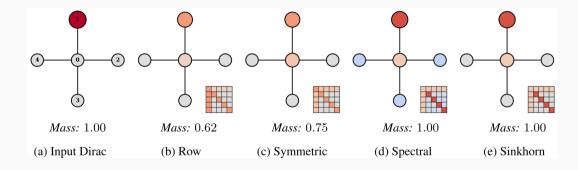
Fast convergence: monitoring the average value of $\left|Q1-1\right|$

Armadillo surface – 5,000 points.



After 5 iterations: 0.1% error.

Fixing the "central node bias"



Well-posedness

Focus on **convolution** with a Gaussian or exponential kernel on \mathbb{R}^d :

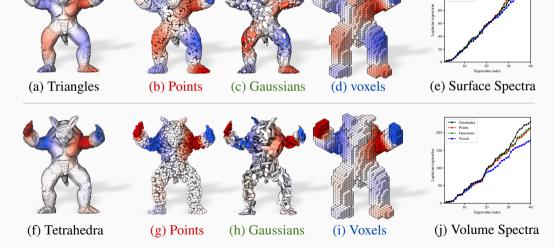
$$S_{\mu}f\,:\,x_i\,\mapsto\,\sum_j k(x_i,x_j)m_jf(x_j)$$

We can interpret the diagonal **scaling** matrix Λ for $Q_\mu=\Lambda S_\mu\Lambda$ as pointwise **multiplication** with a positive, **continuous** function λ .

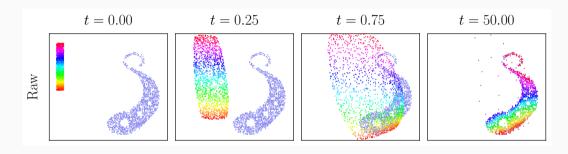
Using standard lemmas from optimal transport theory, we show that:

$$\mu^t \to \mu \implies \lambda^t \xrightarrow{\|\cdot\|_{\infty}} \lambda \implies Q_{\mu}f = \lambda^t S_{\mu}\lambda^t f \xrightarrow{\|\cdot\|_{\infty}} \lambda S \lambda f = Qf.$$

Spectral convergence - 10th eigenvector on the Armadillo

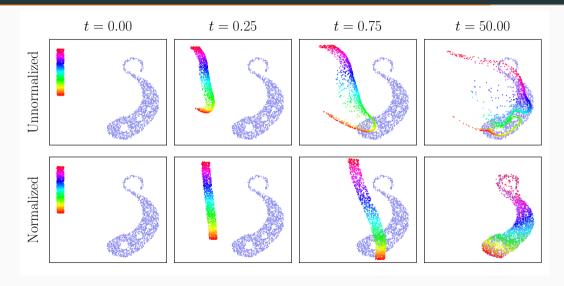


Gradient flows - without regularization



Wasserstein gradient flow of the Energy Distance.

Gradient flows – with a Gaussian regularization at scale $\sigma=0.07$

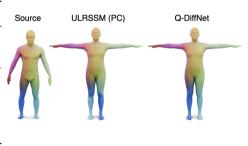


Shape metrics - geodesic interpolation and extrapolation

Normalizing LDDMM kernel metrics fixes the "**exploding geodesics**" problem. We obtain a versatile and topology-preserving metric for shape analysis.

Use a normalized Gaussian convolution instead of a pre-factored Laplacian

Method	FAUST	SCAPE	S19
DiffNet	1.6	2.2	4.5 4.6
			7.5
ULRSSM (PC)	2.3	2.4	5.1
Q-DiffNet (QFM) Q-DiffNet	2.5 2.1	3.1 2.4	4.1 3.5
	DiffNet ULRSSM DiffNet (PC) ULRSSM (PC) Q-DiffNet (QFM)	DiffNet 1.6 ULRSSM 1.6 DiffNet (PC) 3.0 ULRSSM (PC) 2.3 Q-DiffNet (QFM) 2.5	DiffNet 1.6 2.2 ULRSSM 1.6 2.1 DiffNet (PC) 3.0 2.5 ULRSSM (PC) 2.3 2.4 Q-DiffNet (QFM) 2.5 3.1



(a) Mean Geodesic Error

(b) Visualization of Correspondences

Figure 6: Evaluation of Q-DiffNet for shape matching. (a) Mean geodesic error comparison. "PC" denotes retraining on point clouds. (b) Predicted correspondences on SHREC19 59 visualized via color transfer. ULRSSM trained on point clouds confuses symmetric parts (e.g., legs).

Conclusion

We used to face dilemmas:

- **Smooth** with **Laplacians** (expensive) or with **local averages** (biased).
- Normalize operators with row-wise or symmetric scaling.

A simple trick – **iterate** the symmetric scaling update:

- Cheap and versatile.
- Turn convolutions into genuine diffusion operators.
- Fix the "central node bias".

Non-intrusive method to enforce theoretical axioms. Ideally suited to modern parametric models.

References

References i

Guillaume Houry, Tom Boeken, Stéphanie Allassonnière, and Jean Feydy.

Untangling vascular trees for surgery and interventional radiology.

In International Conference on Medical Image Computing and Computer-Assisted Intervention, page to appear. Springer, 2025.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov.

Diffusionnet: Discretization agnostic learning on surfaces.

ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.